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Abstract

We develop simulation methods for matrix product operators, and per-

form simulations of the Quantum Fourier Transform, Shor’s algorithm and

Grover’s algorithm using matrix product states and matrix product opera-

tors. By doing so, we provide numerical evidence that a constant number

of QFTs can be efficiently classically simulated on any state whose Schmidt

rank grows only polynomially with the number of qubits, and quantify the

amount of entanglement present in Shor’s algorithm. The efficiency of the

matrix product state and operator representation allows us to perform mod-

erately large simulations of both Shor’s algorithm with Z errors and Grover’s

algorithm with up to 15 X, Y and Z errors. While larger simulations have

been performed, our results have been computed with little computational

power and provide new methods to perform large-scale quantum algorithm

simulations.
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Chapter 1

Introduction

Quantum computing, the use of quantum devices to perform computations,

may deliver exponentially faster results than classical computing for specific

problems. Most famously, Shor’s algorithm [2, 3] allows the products of

primes to be factorised with an exponential speedup over the fastest known

classical algorithm. However, a quantum computer would be subject to noise

and may only be useful for selected problems which must be identified and

solved with carefully designed algorithms. Research in the field of quantum

algorithms offers ways to address these issues. In this thesis, we focus on

two questions: what is the source of the computational speedup in quantum

computing, and how will a quantum computer perform in the presence of

noise. We address these problems with simulations of quantum algorithms.

Quantum Computing

The idea of quantum computing stems from the exponential growth of the

size of the Hilbert space of a quantum system as the system size increases.

The very large size of such a Hilbert space both makes simulating large scale

quantum mechanical systems very difficult and opens the possibility that

controllable systems could be employed as computers to simulate other inter-

esting quantum systems, an idea was first suggested by Feynman [4]. More

broadly, quantum computing exploits the computational resources of large

Hilbert spaces to perform calculations. Some of the quantum algorithms

that have been discovered are: Shor’s algorithm [2, 3], by which products of

large primes are factorised; Grover’s algorithm [5, 6], by which an unordered

database can be searched with a quadratic speedup over classical methods;

2



3

and quantum simulation [7, 8, 9, 10, 11] by which it is believed that all

physically realistic Hamiltonians can be simulated in polynomial time and

the ground and thermal states of Hamiltonians can be estimated [12]. Quan-

tum walks [13, 14], a quantum analogy of classical random walks, have been

used to create quantum algorithms for such problems as search algorithms

[15, 16, 17], the triangle problem [18] and verification of matrix products [19].

Quantum algorithms have also been described to solve a variety of algebraic

problems such as hidden subgroup problems [20, 21, 22, 23, 24], hidden shift

problems [25, 26], and hidden nonlinear structure problems [27]. Finally,

while in traditional quantum computation, computations are carried out by

applying quantum operations to a system consisting of pure qubits (two

level quantum systems), alternative models exist such as adiabatic quantum

computing [28, 29, 30, 31], in which the solution to a relevant problem is

encoded in the ground state of a Hamiltonian and the Hamiltonian of a

system in a simple ground state is evolved slowly to the more complicated

Hamiltonian; and the one clean qubit model of quantum computation [32]

in which computations are carried out with all qubits except one in a mixed

state. Several more complete surveys and reviews of quantum algorithms

have been made [33, 34, 35, 36, 37].

The fact that quantum mechanical systems can perform some compu-

tations exponentially faster than the fastest known classical systems invites

the question of the origin of this computational speedup. The speedup

must be caused by features of quantum mechanics that are inherently quan-

tum mechanical and so are not reproducible in classical systems. Quantum

entanglement is an natural candidate for such an effect, but it is still un-

clear to what degree it is responsible for, or even necessary for, a speedup

[38, 39, 40, 41, 42, 43, 44, 45, 46]. Some quantum processes have been found

[47, 48, 49, 50] which exhibit some computational speedup over classical

methods, but display fixed entanglement as the size of the quantum system

increases. Besides entanglement, another measurement of quantum correla-

tions is discord [51, 52], and there are suggestions that it may be required in

order for a speedup to occur [53, 54, 55]. Simulations of quantum computers

are needed in order to quantify the level of entanglement and other correla-

tions such as discord during these algorithms. In this thesis, we quantify the

entangelement present during simulations of Shor’s and Grover’s algorithms.

Another method of studying the origin of quantum computing’s com-
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putational speedup is to study which quantum mechanical procedures can

be efficiently classically simulated. By developing new classical simulation

techniques, parts of algorithms may be identified which permit efficient clas-

sical simulation. This identification limits the parts of quantum algorithm

from which an advantage can and cannot arise over classical computing.

Any quantum mechanical algorithm, or part of an algorithm, which per-

mits efficient classical simulation cannot lead to a speedup during quantum

processing. We perform simulations related to the source of quantum com-

putational speedup in this thesis using the matrix product state and matrix

product operator representations of quantum states and operators.

A physical quantum computer would be constantly interacting with its

environment and would be difficult to control to the very high level of pre-

cision demanded to perform quantum computational tasks. As such, the

computer would undergo decoherence and would not perform precisely the

gates and algorithms the experimenter would require. A variety of quantum

error correction codes have been developed to deal with this difficulty and to

make quantum computers robust [56]. Among the most promising of these

is the surface code [57]. A variety of results exist for the robustness of this

code depending upon the assumptions made, with some indicating that the

code could be robust to noise levels of up to 1% [58, 59]. This high error

tolerance comes at the cost of using large numbers of qubits, with an esti-

mate for the number of qubits need to factor a 2000 bit number of 20× 107

[57]. This number of qubits is well beyond current capabilities, and so it is

interesting to ask what computations could be performed on medium sized

quantum computers in the presence of a small but non-zero number of er-

rors. In this thesis we develop simulations that operate in a suitable regime

to study this question. With the simulation of noisy quantum computa-

tions we also seek to shed light on the fundamental nature and operation

of the algorithms we simulate. For this reason, we perform simulations of

both Shor’s algorithm and Grover’s algorithm and quantify the probability

of success of these algorithms under various error models.

Simulating quantum algorithms

We perform simulations related to the source of quantum computational

speedups in this thesis using the matrix product state and matrix product

operator representations of quantum states and operators. Matrix product
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states first appeared in the density matrix renormalisation group method [60,

61] (DMRG). This is a numerical method of determining the ground state

of quantum mechanical systems. It achieved high levels of accuracy and use

in one-dimensional systems. It was later determined that DMRG operates

on matrix product states [62, 63], which naturally encode states in a way

that is transparently related to the amount of entanglement they possess.

Matrix product states allow small scale entanglement to be easily truncated

from a system, leaving only the most important correlations. Separately

to DMRG results, they have been separately shown to be able to simulate

lightly entangled quantum systems efficiently [40]. As such, they may be

used to efficiently simulate selected large-scale quantum algorithms.

Matrix product states encode the information of a quantum state in local

manner by a one dimensional network of tensors. There are several gener-

alisations of matrix product state. These include projected entangled pair

states [64], which encode quantum states in higher numbers of spatial dimen-

sions, but can be more difficult to efficiently simulate than matrix product

states. Matrix product operators [65, 66] extend the matrix product state

formalism to describe quantum mechanical operators in a one dimensional

tensor network. These operators are used to perform time evolution on

matrix product states [67, 68] in condensed matter calculations. However,

they have not been extensively used in the past to study the operation of

quantum algorithms. In this thesis we use matrix product operators as well

as matrix product states in the simulation of quantum algorithms. These

states and operators allow quantum information to be presented in a highly

local format and so allow the simulation of larger systems than many other

simulation methods. As a result, we are able to simulate large instances of

Grover’s and Shor’s algorithm with simple error models.

Several other simulation results exist for the efficient classical simulabil-

ity of quantum algorithms. The Gottesman-Knill theorem [69, 70] states

that circuits composed only of quantum gates from a particular group, the

Clifford group, can be efficiently simulated. These techniques have been

extended to show the simulability of quantum Fourier transforms and nor-

malizer circuits over Abelian groups [71, 72]. The simulation of a different

group of gates which called match-gates [73, 74] can be shown to be equiv-

alent to the simulation of fermionic linear optics[75, 76], which is efficiently

classically simulable. Vidal has shown that quantum circuits that generate



6

limited amounts of entanglement are efficient classically simulable by using

matrix product states [40]. Another approach is to view quantum circuits as

graphs and to simulate them by contracting indices one by one. Considering

circuits this way, it has been shown that any circuit whose graph represen-

tation has restricted topological properties, such as a small tree-width, may

be efficiently classically simulated [41, 77, 78]. Finally, the efficient simula-

tion of any circuit with a sparse output distribution has been shown [79].

Our work computationally builds on this earlier work with matrix product

simulations to obtain further results about the simulability of the quantum

Fourier transform and Grover’s algorithm.

Outline

In chapters 1 and 2 of this thesis we provide introductions to quantum com-

puting and matrix product states and operators respectively. In chapter 2

we also detail our methods of quantum circuit simulation including original

work on how to add matrix product operators during quantum algorithm

simulation. In chapter 3 we form the matrix product operator representa-

tion of the quantum Fourier transform and provide computational evidence

that a constant number of transforms can be efficiently classically simulated

for all states with Schmidt ranks which grow only polynomially with the

number of qubits. We use our quantum Fourier transform results to sim-

ulate Shor’s algorithm in Chapter 5 under the presence of dephasing noise

and quantify the affect on the success of the algorithm. Finally, we simulate

Grover’s algorithm with matrix product operators in chapter 6. We analyse

the complexity of the matrix product operator of the oracle as well as sim-

ulating the algorithm for up to 40 qubits with up to 15 X, Y and Z errors

individually and with depolarizing noise.



Chapter 2

Quantum Computing

2.1 Quantum bits and gates

The basic unit of information in classical computing is the bit: it is a digital

unit that can take the values of 0 or 1 (sometimes called off and on) The

analogous unit of information in quantum computing is the quantum bit, or

qubit. This is a quantum system in a two dimensional Hilbert space. As

such, it can be said to be in a superposition of the 0 and 1 states:

|ψ〉 = a|0〉+ b|1〉, |a|2 + |b|2 = 1. (2.1)

Measurement of the qubit in the computational basis returns 0 with proba-

bility p0 = |a|2 and 1 with probability p1 = |b|2. Similarly, a larger quantum

system of d qubits can be considered as a 2d dimensional qudit, a unit of

quantum information with 2d possible values.

A single quantum bit has several features that are inherently quantum

mechanical:

• A quantum bit is in a superposition of basis states, so can be said to

be to some degree in both of the quantum states |0〉 and |1〉. This

can bring about non-determinism in performing a calculation using a

quantum bit.

• A quantum bit has a phase between the coefficients of the |0〉 and |1〉
basis states, as well as a global phase. The relative phases can be

exploited.

7



2.1. Quantum bits and gates 8

It is in scaling up from a single qubit to many qubits that the possible

benefits of quantum computing become clear. With n classical bits, there

are 2n possible distinct bit strings. A computer of n bits may be in any of

these states. With n qubits, the 2n distinct bit strings are each a basis state

of the overall quantum system. A quantum computer of n qubits can thus

exist in any superposition of these states:

|ψ〉 =
∑
i1,...,in

ci1,...,in |i1, . . . , in〉,
∑
i1,...,in

|ci1,...,in |
2 = 1, (2.2)

where ij is the state of the jth qubit. Having a large superposition of basis

states allows a computation to be carried out on each basis state at the same

time. This is known as quantum parallelism. However, the probabilistic

nature of quantum systems means that there would be no way to efficiently

obtain the coefficient of every basis state after performing a computation.

A way that information can be extracted from a large quantum system is

by interfering the different coefficients ci. Doing so allows a measurement

to extract a piece of information influenced by some or all of the coefficients

present. The task of quantum algorithms research is to find ways to exploit

features of large quantum superpositions such as these to efficiently perform

computational tasks.

Classically, bits are manipulated and interact with Boolean logic gates.

In quantum computing, qubits are controlled via unitary quantum gates. In

both cases these gates can be drawn in circuit diagrams, with a horizontal

line corresponding to one bit (qubit). Gates acting on a given bit (qubit)

are placed over the corresponding line. In these diagrams (particularly for

quantum circuits), time flows from left to right.

With a single bit, the only classical logic gate is the NOT gate which

performs the logical NOT operation x→∼ x:

The analogous quantum gate is the Pauli X gate. However, a one qubit

Input Output

A ∼ A
1 0
0 1

Figure 2.1: The circuit element and truth table for the classical NOT gate

quantum gate can encode any valid unitary operation on a single qubit. As
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such, there are an infinite number of one qubit gates. To conceptualise these

gates, a one qubit state |ψ〉 is often parameterised by two angles θ and φ:

|ψ〉 = cos(θ/2)|0〉+ exp iφ sin(θ/2)|1〉. (2.3)

Note that this parameterisation does not include all of the information

needed to uniquely specify a quantum state, but in quantum information

we ignore global phases. Using the two angles θ and φ as the two angles in

a circular coordinate system, the state may be considered as existing on a

sphere of radius one called the Bloch sphere, shown in figure 2.2.

Figure 2.2: The Bloch sphere, source: [80].

Using the parameterisation (2.3), one qubit gates can be considered to

be composed of rotations around two of the three perpendicular axes of

the Bloch sphere. The Pauli gates X,Y and Z gates represent π rotations

around the x̂, ŷ and ẑ axes respectively, and are shown in figure 2.3. Other

X

[
0 1
1 0

]
Y

[
0 −i
i 0

]
Z

[
1 0
0 −1

]
Figure 2.3: The circuit symbols and matrices of the one qubit Pauli gates.

rotations of angle γ around an axis may be formed through exponentiation

of the corresponding Pauli matrix:

Rx(γ) = e
−iγX

2 X (2.4)

Ry(γ) = e
−iγX

2 Y (2.5)

Rz(γ) = e
−iγX

2 Z (2.6)

Together with the identity matrix I the Pauli matrices also form a complete
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basis for one qubit quantum gates.

As well as the Pauli gates, quantum circuits are often written with two

additional standard gates: the Hadamard (H) gate and the phase shift (Rθ)

gate. These are shown in figure 2.4. We note that the Z gate is a phase

shift gate with angle θ = π.

H
1√
2

[
1 1
1 −1

]
Rθ

[
1 0
0 eiθ

]
Figure 2.4: The circuit symbols and matrices of the Hadamard and phase
shift gates.

Interactions betdween classical bits are brought about by two bit gates.

There are a range of classical logic gates acting on two bits, such as AND,

OR, XOR, NOR and NAND. The NAND gate is universal for classical com-

putation. This means any gate with any number of bits can be constructed

from only NAND gates, although ancillary bits may be required.

Input Output

A B A AND B

0 0 0
0 1 0
1 0 0
1 1 1

Input Output

A B A OR B

0 0 0
0 1 1
1 0 1
1 1 1

Input Output

A B A NAND B

0 0 1
0 1 1
1 0 1
1 1 0

Figure 2.5: The circuit elements and truth tables for the classical logical
AND, OR and NAND gates

Quantum mechanical two qubit gates are, like one qubit gates, unitary

operations. An implication of this is that quantum mechanical gates have
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to be reversible, and so the number of outputs must be equal to the number

of inputs. This is an important distinction from classical two bit gates,

which often have two inputs but only one output. We show two two-qubit

gates in figure 2.6, the controlled not (CNOT) gate and the controlled Z

(CZ) gate. The behaviour of these gates, and other controlled gates, can

be understood as only applying the gate to the second qubit if the state

of the first qubit is one. This classical behaviour description generalises

to a quantum mechanical description by applying the gate individually to

each basis state and then adding the results to obtain a new quantum state.

Another very important two qubit gate is the SWAP gate, which swaps the

•


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 •

Z


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


Figure 2.6: The circuit symbols and matrices for the two qubit quantum
gates CNOT and CX.

states of two qubits. This gate is shown in figure 2.7

×

×


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Figure 2.7: The two qubit SWAP gate

It is possible to describe a variety of gates acting on three qubits and

higher, however for simplicity we only refer to controlled gates. In this case,

a single qubit gate is applied to one of the qubits if the state of every control

qubit is one. The CCNOT gate, in which two qubits are used to control a

single X gate, is shown in figure 2.8 and is called a Toffoli gate.

While it is possible to describe an infinite number of gates acting on

any number of qubits, it is only necessary to describe a few in order to

reproduce any quantum computation. Any classical logic circuit may be

produced out of only NOT and AND gates, out of only NAND gates or

out of only NOR gates. Note that this statement does not say that it is

possible to find an efficient decomposition out of a universal classical gate set,

only that a decomposition exists. The three-qubit Deutsch gate is universal
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•
•



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


Figure 2.8: The circuit symbols and matrices for three qubit Toffoli gate

for quantum compuation [81], and if multiple gates are allowed to form a

universal set, then any quantum computation on any number of qubits may

be expressed exactly as a product of only one qubit gates and the CNOT

gate [82]. Indeed, any computation can be expressed to arbitrary accuracy,

but not neccessarily exactly, by only the H, Z, CNOT and π/8 gates (a π/8

gate applies a phase of eiπ/8 to the |1〉 state but no phase to the |0〉 state)

This is the standard universal set of quantum gates, but there are many

others. As with classical circuits, these are existence rather than efficiency

results. An efficiency result for two qubit unitaries is that using the standard

universal set, it is possible to approximate an arbitrary two qubit gate to

accuracy ε using O(log(1/ε))c standard gates, where c is a constant [83]

2.2 Grover’s Algorithm

Grover’s algorithm is a quantum mechanical algorithm for searching a

database. It was first proposed by Grover [5, 6] and extended by Boyer et

al [84] to search problems with more than one solution. We will summarise

the action of Grover’s algorithm following the treatment of [85].

Grover’s algorithm deals with a search problem in the following format:

the database to be searched consists of the N = 2n computational basis

states in a n qubit system. Given this database, we define a function f(x)

which returns 1 if x is one of M solutions to the search problem and 0 is x

is not. We are provided with an quantum mechanical oracle (a black box)

which we consider as an operator O which applies the following transforma-

tion to a state:

|x〉|q〉 O−→ |x〉|q ⊕ f(x)〉, (2.7)
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where ⊕ represents addition modulo 2. We consider the oracle to take time

O(1) to execute and so ask how many applications of the oracle are required

to determine a solution to the search problem. To find a solution out of

N elements in an unstructured database classically requires O(N) classical

oracle applications, while Grover’s algorithm allows the same task to be

performed with O(
√
N) quantum mechanical oracle applications. Grover’s

algorithm thus provides a quadratic speedup over classical methods.

Before we describe the operation of Grover’s algorithm, we note a

simplification to our notation. If we place a qubit in the state |−〉 =

1/
√

2 (|0〉 − |1〉), then |− ⊕ 0〉 = |−〉 and |− ⊕ 1〉 = −|−〉, and so adding

q modulo 2 to the state of this qubit for an integer q is equivalent to multi-

plying the qubit by a phase of (−1)q. By placing the second qubit of (2.7) in

the state |−〉, we can thus consider the oracle as an operator which applied

a phase of −1 to all computational basis states in the first qudit which are

solutions while leaving unchanged all those basis states which are not:

|x〉 O−→ (−1)f(x)|x〉. (2.8)

Grover’s algorithm consists of initial state preparation and the action

of an operator called the Grover iteration m times. To prepare a quantum

input state for Grover’s algorithm, we take the computational basis state

|0〉 of the overall system, and apply a Hadamard gate to each qubit:

|0〉 . . . |0〉 Hn

−−→ 1

N
(|0〉+ |1〉) . . . (|0〉+ |1〉) =

1

N

N∑
i=1

|i〉. (2.9)

The input state to Grover’s algorithm, which we refer to as |ψ〉, is thus an

equal superposition of all basis states.

Grover’s algorithm requires repeated applications of the Grover iteration.

To perform a Grover iteration, we first apply to oracle to the entire quantum

state. We then apply an operator called inversion about the mean, which

can be written as I − 2|ψ〉〈ψ|. As such, we write the Grover iteration as

G = (I2|ψ〉〈ψ|)O.

To illustrate the affect of Grover’s algorithm, we denote the set of solu-

tions to the search problem by {s}, and write a new basis for the state of
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the quantum system:

|α〉 =
1√

N −M

∑
x/∈{s}

|x〉, |β〉 =
1√
N

∑
x∈{s}

|x〉. (2.10)

It is straightforward to write the initial state |ψ〉 in this basis:

|ψ〉 =

√
N −M
N

|α〉+

√
M

N
|β〉, (2.11)

and so the initial state is spanned by the two basis states {|α〉, |β〉}. If we

consider the quantum state to fall on a unit circle in a basis spanned by these

two states (α, β), it is clear that the oracle performs a reflection of the state

about the α axis. After this, the inversion about the mean operator performs

a reflection about the state |ψ〉. The net result of these two reflections is a

rotation in the (α, β) plane towards the β axis (corresponding to a quantum

state composed entirely of solutions to the search problem), and away from

the α plane.

If we set sin(θ/2) =
√
M/N , then |ψ〉 = cos (θ/2) |α〉+ sin (θ/2) |β〉. We

can show that applying a Grover iteration amounts to a rotation of the state

in the (α, β) plane of θ. As such, applying m Grover iterations will produce

the state:

Gm|ψ〉 = cos

((
m+

1

2

)
θ

)
|α〉+ sin

((
m+

1

2

)
θ

)
|β〉 (2.12)

Repeated applications of the Grover iteration thus rotate the state close to

|β〉. The coefficient of the state in the basis state |β〉 will be maximised by

setting (m+ 1/2) θ ≈ π/2. It follows that m = CI
(
1
2

(
π
θ − 1

))
. By taking

the large N/M limit, we may set θ ≈ 2
√
M/N , and so the optimal number

of iterations is m ≈ CI

(
π
4

√
N
M −

1
2

)
. We may then find an upper bound

for this expression (which in the large N/M limit is a good approximation)

m ≈ dπ4
√

N
M e. After this many Grover iterations, the state will be very close

to |β〉 (indeed the coefficient of |α〉 will decrease quickly as N/M increases)

and so be measuring each of the qubits, we have a very high probability of

obtaining a solution to the search problem. We thus find that, as stated at

the start of this section, the number of oracle calls to obtain a solution to

the search problem is O(
√
N/M), which reduces to O(

√
N) if there is only
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one solution to the search problem, which is classically the most difficult

case.

It has been shown that Grover’s algorithm is asymptotically the most

optimal search algorithm. That is, there are no algorithms that take less

oracle calls than O(
√
N/M) [86, 87]. Grover’s algorithm has a weakness

that the number of solutions is required to be known before the algorithm

is run. However, modifications for the algorithm exist which remove this

requirement [88, 89].

2.3 Shor’s Algorithm

Shor’s algorithm is an algorithm to factorise large numbers which are

the multiples of two primes. Many modern cryptographic algorithms are

founded on the difficulty of this problem, and so being able to run Shor’s

algorithm in a scalable way would invalidate these algorithms and the se-

curity of the data they protect. The time required to perform the fastest

known classical algorithms for factorising large numbers scales exponentially

with the number of bits in the numbers [90]; however, Shor’s algorithm per-

forms this factorisation in an amount of time which is polynomial in the

number of bits. As such, Shor’s algorithm provides an exponential speedup

over the fastest known classical algorithm for the same problem. For this

reason, there has been much interest in and study of this algorithm since its

conception by Shor [2, 3].

The foundation of Shor’s algorithm is the fact that factorising large num-

bers can be reduced to order finding. That is, for two integers a and N ,

the order of a modulo N is the smallest positive integer r such that ar

mod N = 1. Order finding is the problem of finding this order for a given

set of numbers a,N . The problem of factorising a number N is equiva-

lent to finding a non-trivial solution to the problem x2 mod N = 1, where

x 6= ±1 mod N . If we know ar mod N = 1, r is even and r 6= ±1 mod N

then we can take x = ar/2 mod N which will provide a non-trivial solu-

tion to x2 mod N = 1. In this case we can compute gcd(xr/2 − 1, N) and

gcd(xr/2 + 1, N), one of which will be a factor for N . Shor’s algorithm op-

erates by choosing a random value a in the range 1 . . . N and calculating

the gcd(a,N). The value gcd(a,N) will either be greater than 1, providing

a factor for N , or 1, in which case a and N are co-prime. If a and N are
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co-prime, the order of a modulo N is calculated. The probability that the

order r will be even and will fulfill the above criteria is at least 1 − 1/2m,

where m is the number of prime factors of N [85]. In this case, a factor will

be provided for Shor’s algorithm. If this is not the case, the algorithm fails

and a new co-prime is chosen.

To factorise a number N with co-prime a by Shor’s algorithm, 3n qubits

are required where n = dlog2(N)e. These qubits are divided into two reg-

isters, the upper register which is composed of 2n qubits, and the lower

register which is composed of the remaining n qubits. We consider the bot-

tom register as a 2n dimensional qudit which begins in the quantum state

|1〉 and each of the top register’s qubits individually. Each of the top register

qubits start the computation in the state |0〉 before having a Hadamard gate

applied to them.

Once the initial quantum state has been prepared, Shor’s algorithm

proceeds in two stages: modular exponentiation and the inverse quantum

Fourier transform. To perform modular exponentiation, we require a gate

which operates on the lower register as U |x〉 = |ax mod N〉. We then per-

form a series of quantum gates whose end result is an operator V with the

action V (|j〉|u〉) = |j〉U j |u〉. As the quantum computer after initialisation

is in the state 2−2n
∑

i |i〉|1〉, this state of the computer will be transformed

to:

|φ〉 = 2−n
∑
j

|j〉
∣∣aj mod N

〉
. (2.13)

In order to create the operator V , we require the ability to perform a series

of gates U2j for 0 < j < 2n − 1. Given these gates, we condition the gate

U20 on the first qubit in the upper register, U21 on the second qubit in the

upper register and so on. A circuit performing this operation is shown in

figure 2.9. The final state of the system after performing 2n controlled U

gates will be (2.13).

Once modular exponentiation has been performed, we use the quantum

Fourier transform (QFT) to recover r. To show how the QFT operating on

the state (2.13) allows this, we follow the introduction to Shor’s algorithm
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in [85]. The eigenvectors of U can be be shown to be:

|us〉 =
1√
r

r−1∑
k=0

exp

(
−2πisk

r

) ∣∣∣xk mod N
〉

(2.14)

In this case it is possible to show that 1/
√
r
∑r−1

s=0 e
2πisk/r|us〉 =∣∣xk mod N

〉
, and so we may write (2.13) in terms of |us〉:

|φ〉 =
2−n√
r

r−1∑
s=0

22n−1∑
j=0

e2πisj/r|j〉

 |us〉 (2.15)

The quantum Fourier transform (QFT) is the operator:

QFT =
1√
N

N−1∑
j=0

N−1∑
k=0

e2πijk/N |j〉〈k|. (2.16)

We will provide more detail about the QFT and its circuit decomposition

in section 2.4. By running the QFT in reverse, we perform the inverse QFT

(IQFT), which will perform the transformation 2n/2
∑2n−1

j=0 e2πijφ/2
n |j〉 →∣∣∣φ̃〉, where φ̃ is a n qubit approximation of φ. If φ can be exactly represented

in binary with n bits, then φ̃ = φ.

By performing the IQFT on the top register of our state in the form

(2.15) we will thus obtain a state which contains a good estimate of r:

IQFT|φ〉 =
1√
r

r−1∑
s=0

∣∣∣s̃/r〉|us〉. (2.17)

By measuring the bottom register we obtain with a high probability a state

which is an integer near to s/r · 22n for some s < r. By performing a

continued fractions expansion we can then obtain a list of fractions s/r

which could obtain such a measurement result. This list of fractions yields

a set of r values which can be tested to see if they produce a factor of

N . If none of the r values are correct then the algorithm must be re-run;

however, there is in general a low probability that the algorithm will fail.

Scaling arguments which take into account the probability of success in each

individual iteration of Shor’s algorithm and optimisations of the algorithm

find that the time taken to factorise a number of n bits with Shor’s algorithm
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scales with O(n2 log(n) log(log(n))) [3].

|0〉 H •

IQFT
|0〉 H •

|0〉 H •

|0〉 H •

|1〉
U23 U22 U21 U20

Figure 2.9: A quantum circuit to perform Shor’s algorithm for n = 2 with
six qubits.

|0〉 H⊗2n • IQFT

|1〉 aj mod N

Figure 2.10: The overall action of Shor’s algorithm. The top qudit here
represents the entire top register and the bottom qudit the bottom register.

Our explication of Shor’s algorithm has so far focused on the operation

of the algorithm broadly. In this way, we have assumed that U2j gates

are available and that qubits arbitrarily far apart can be interacted. How-

ever, in realistic quantum computing architectures there are restrictions on

which qubits can interact and only a universal set of gates are available.

Specific quantum architectures include those in which qubits are arranged

linearly and only nearest neighbours can interact (linear nearest neighbour

or LNN architectures) and those in which the qubits are arranged in a 2D

lattice and nearest neighbours in any direction can interact (2D LNN ar-

chitectures), as well as others. Work has been performed on how to per-

form all of Shor’s algorithm [91], as well as just the modular exponentiation

[92, 87, 93, 94, 95, 96] and just the QFT [97], each in a LNN architecture.

Each of these decompositions of Shor’s algorithm carries a gate overhead,

requires additional ancillary qubits, or both. The different decompositions

try to minimise either the gate overhead or the number of ancillas, and so

which decomposition is chosen depends upon how costly each of these is in a

particular quantum computer. The 2D architectures have also been consid-
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ered for Shor’s algorithm [98, 99], as well as architectures which are similar

to those considered but allow interactions between further apart qubits or

modify the topologies in which qubits are arranged. The simulation tech-

niques we use in this thesis require a linear arrangement of qubits, and as we

wish to perform large scale simulations we will use a circuit with complete

U2j gates operating in a LNN quantum computer.

2.4 Quantum Fourier Transform

The standard quantum Fourier transform (QFT) is an integral part of Shor’s

algorithm, as well as quantum simulation and other quantum algorithms. As

stated in section 2.3, the QFT may be written in terms of its action on a

basis state |j〉:

|j〉 → 1√
N

N−1∑
k=0

e2πijk/N |k〉. (2.18)

By expanding |j〉 into its binary representation |j1, . . . , jn〉, we may rewrite

(2.18):

|j1, . . . , jn〉 → 2−n/2
(
|0〉+ e2πi0.jn |1〉

) (
|0〉+ e2πi0.jn−1jn |1〉

)
. . .
(
|0〉+ e2πi0.j1...jn |1〉

)
, (2.19)

where 0.jm . . . jn = jm/2 + . . . + jm/2
n−m+1. As this representation of the

QFT makes explicit the action on each qubit,it is possible to directly convert

(2.19) into a quantum circuit. This conversion is performed by noting that

the output values at each qubit can be regarded as a series of controlled

phase rotations of decreasing size applied to the state |+〉. To this end, we

define a phase rotation gate with an appropriate variable angle:

Rk =

[
1 0

0 e2πi/2
k

]
. (2.20)

The quantum circuit for the QFT with four qubits using this gate is shown in

figure 2.11. Quantum circuits with higher numbers of qubits generalise from

this in a straightforward fashion. This quantum circuit was first described

by Coppersmith [100].
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H • • •

R2 H • •

R3 R2 H •

R4 R3 R2 H

Figure 2.11: The canonical decomposition of the quantum Fourier transform
with four qubits. The SWAP gates required to reverse the order of the qubits
at the end of the circuit are not shown.

H • × H • × H • H

R2 × • × R2 × • × R2

R3 × • × R3 ×

R4 ×

Figure 2.12: A version of the quantum Fourier transform with four qubits
using only nearest neighbour quantum gates. The SWAP gates required to
reverse the order of the qubits at the end of the circuit are not shown.

As we noted in section 2.3, the QFT can be decomposed into two qubit

gates on a linear nearest neighbour architecture. There is more than one

approach to how to perform this mapping, but we will use the decomposition

of [91] in this thesis. The LNN quantum circuit for the four qubit QFT in

this decomposition is shown in figure 2.12.

A number of improvements or modifications of the standard QFT are

possible in order to make it easier to perform on a quantum computer.

The size of the smallest controlled phase rotation in the QFT decreases

exponentially with the number of qubits being transformed. Very small

phase rotations would be expected to have little effect on the final output of

a quantum circuit but will cause a large increase in the number of universal

gates required to implement a circuit. As such, all phase rotations smaller

than a certain value are often removed from the QFT. In this case the

QFT is referred to as the approximate QFT or AQFT, and the maximum

number of phase rotations applying to an individual qubits referred to as

the bandwidth. A circuit for the AQFT with five qubits and a bandwidth

of two is shown in figure 2.13.

Another modification of the QFT is to replace it with a much simpler
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H • •

R2 H • •

R3 R2 H • •

R3 R2 H •

R3 R2 H

Figure 2.13: The AQFT for five qubits with a bandwidth of two.

circuit called the semiclassical quantum Fourier transform, suggested by

Griffiths and Niu [101]. This modification may be performed if each qubit

will be measured immediately after the QFT, and so the measurement prob-

abilities of each qubit matter, but the relative phases do not. In this case,

we measure each qubit immediately after its final Hadamard gate and then

classically condition each controlled phase rotation on the measurement re-

sult. A quantum circuit implementing this procedure is shown in figure 2.14

for four qubits. Classically conditioning rather than quantum mechanically

conditioning the phase rotation gates significantly reduces the number of

coherent quantum gates that must be applied to obtain the correct mea-

surement outcome probabilities.

H • • •

R2 H • •

R3 R2 H •

R4 R3 R2

Figure 2.14: The semiclassical QFT with four qubits. Double lines here
represent classical information.

2.5 Entanglement

Entanglement is perhaps the feature of quantum mechanics which is the most

nonclassical. Two quantum mechanical systems are said to be entanglement

if their combined state is not separable. That is, they are entangled if the

state cannot be written in the form |ψ〉 = |ψ1〉 ⊗ |ψ2〉, where |ψ1〉 and |ψ2〉
are the states of the two subsystems. If the systems are entangled, then mea-
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suring with one system will instantaneously change the quantum mechanical

state of the other system. This idea is the source of the Einstein-Podolsky-

Rosen (EPR) paradox, and the difference between classical correlations and

quantum mechanical entanglement is quantified in Bell’s inequalities.

In searching for the source of the speedup of quantum algorithms over

their fastest known classical counterparts, we would expect to find nonclas-

sical features of quantum mechanics displayed by the quantum algorithms.

As the most nonclassical feature of quantum mechanics, entanglement would

seem to be a prime candidate for being the source of, or at least a contribut-

ing factor to, the quantum speed-up. This contention is aided by the impor-

tance of entanglement to other quantum information applications such as

quantum key distribution [102], quantum teleportation [103] and quantum

dense coding [104]. Despite this, the question of the usefulness and necessity

or otherwise of using highly entangled states for quantum computing remains

open. Several results have been published indicating that without entangele-

ment quantum computers can be efficiently simulated [38, 39, 40, 41, 42],

but these results rely on pure state quantum computation. It has been

shown that algorithms and schemes capable of exponential speed-up exhibit

potentially large amounts of entanglement [43, 44, 45].

Discord [51, 52] is another measure of nonclassical correlations between

two different subsystems of a quantum system. A class of quantum algo-

rithms have been proposed which use a single qubit with non-zero purity

and other qubits in a completely mixed state [32]. These algorithms have

an exponential advantage over the best known classical algorithms for cer-

tain tasks. They display very small small amounts of entanglement, but

large amounts of overall correlation and of discord [48, 49, 53]. Similarly,

quantum mechanical computations in mixed states with little or fixed en-

tanglement but a speed-up over classical computations has been found [50]

Such results have even been found in pure states [46]. The difficulties inher-

ent in solving the problem of the source of quantum speed-up are increased

by the fact that entanglement and discord are difficult to calculate for large

mixed states [105].

In light of the debate surrounding the importance of the quantum entan-

glement, it is clear that entanglement is an important quantity to calculate

when simulating algorithms. Calculating the entanglement can also provide

insight into how an algorithm functions and how it is affected by noise. In
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this thesis we will calculate the entanglement in pure state simulations of

Shor’s algorithm, and so we summarise here a few measures of entanglement.

A measure of entanglement is a function which ranks states from the least

entangled to the most entangled. In order to be a entanglement measure, a

candidate function f must fulfill a set of criteria:

• Separable states have no entanglement, and so an entanglement mea-

sure must return 0 on these states. These are pure states of the form

|ψ1〉⊗|ψ2〉⊗. . .⊗|ψn〉 or mixed states of the form
∑

i ρi1⊗ρi2⊗. . .⊗ρin .

• Entanglement cannot increase under local operations and cloassical

communication for any valid local quantum mechanical local opera-

tion.

• Entanglement does not change under local unitary operations.

In line with the first criterion above, any two entanglement measures must

agree which states are not entangled; however, they may rank entangled

states in different orders. In general then, whether one state is more entan-

gled than another depends specifically on which entanglement measure is

used. We will now introduce some entanglement measures.

Entropy of entanglement

The first entanglement measure we introduce is the entropy of entanglement

[106]. Given a pure state |ψ〉 divided into two halves a and b through a suit-

able bipartition, the entropy of entanglement is the von Neumann entropy

of the reduced state in each subsystem. That is, S = −tr(ρa log(ρa)) =

−tr(ρb log(ρb)) where ρa and ρb are the reduced density matrices of the

state |ψ〉 in the subsystems a and b respectively. If we write one of ρa or

ρb in terms of its eigenvalues ρa =
∑

j λj |j〉〈j| (or similarly for ρb), then

S = −
∑

j λj log λb. To calculate the entropy, we must either be able to

take the logarithm of a reduced density matrix or write it in terms of its

eigenvalues. For an arbitrary large quantum state, these calculations will

be difficult to perform. Many mixed state entanglement measures reduce to

the entropy of entanglement when considering pure states. Such measures

are called entanglement monotones.
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Negativity

The negativity [107] is an entanglement monotone that does not require vari-

ational maximisation. It is derived from the PPT criterion, that the partial

transpose of an unentangled quantum system must preserve its positivity.

The negativity is given by:

N (ρ) =
‖ρTA‖1 − 1

2
, (2.21)

where ρTA is the density matrix ρ with subsystem A transposed, and

‖ρ‖ = tr
(√

ρ†ρ
)

is the trace norm of ρ. Equation (2.21) is equivalent

to an alternative expression:

N (ρ) =
∑
j

θj =
∑
j

|λj | − λj
2

, (2.22)

where λj are the eigenvalues of ρ, and {θj} is the sum of the negative

eigenvalues of ρ.

Logarithmic-negativity

Another entanglement measure related to the negativity is the logarithmic-

negativity (log-negativity), which is the only entanglement measure we will

compute in this thesis. The log-negativity is given by:

EN (ρ) = log2
(
‖ρTA‖1

)
= log2 (2N + 1) . (2.23)

As it is derived from the negativity, the log-negativity is relatively straight-

forward to compute. It is not convex and so was intially thought to be able

to be increased by LOCC (local operations and classical communication)

[107]. However, it was later shown to be an entanglement monotone [108].

It provides an upper bound to a more difficult entanglement measure to

compute, the distillable entanglement. The distillable entanglement is the

number of states which are arbitrarily close to bell states which can be pre-

pared from a state ρ by LOCC, in the asymptotic limit that there are an

infinite number of states ρ. The logarithmic negativity is also additive on

tensor products (that is EN (σ ⊗ ρ) = EN (σ) + EN (ρ)), but may be zero

even if a state is entangled.
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Geometric measure of entanglement

A geometric measure of entanglement [109, 110] measures the distance of a

given state to the nearest unentangled state. More formally:

E(|ψ〉) = min|φ1〉,...,|φn〉D (|ψ〉, |φ1〉 ⊗ . . .⊗ |φn〉) , (2.24)

where n is the number of subsystems of |ψ〉 and D is a measure of distance

between states (for example the inner product) which ensures that E has

the properties required of an entanglement measure. Unlike the negativity

or entropy of entanglement, a geometric measure of entanglement does not

require the choice of a particular bipartition of the quantum system, and so

is able to calculate multipartite entanglement.

A geometric measure of entanglement can be extended to mixed states

with a convex roof construction. That is:

E(ρ) = min
E

∑
i

piE(|ψi〉), (2.25)

where the minimisation is taken over all sets of pure states E = {pi, |ψi〉}
which produce ρ =

∑
i pi|ψi〉〈ψi|. Such a calculation requires variational

minimisation over the set of separable states to calculate the entanglement

of each |ψi〉, as well as over the set of permissible decompositions of ρ. As

such, it is in general quite difficult to calculate.

2.6 Decoherence

The descriptions of the operation of each quantum algorithm rely upon the

assumption that individual quantum systems can be addressed, controlled

and interacted perfectly. However, physical quantum devices exist in noisy

external environments and are very difficult to individually control. As

a result, a variety of different kinds of noise and errors can compromise

the success of quantum algorithms. These can include interactions with

the environment leading to decoherence, imperfect gate application (which

may lead to coherent errors), errors in qubit initialization or measurement,

qubit loss and qubit leakage. We will first consider the affect of interactions

between a quantum computer and its environment.

In a specific quantum system, the influence on the environment can be
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incorporated into the evolution of the system by starting with an initially

uncoupled system and environment ρ0 = ρs ⊗ ρe, evolving them with an

entangling operator which reflects their interaction to obtain ρ1 = U †ρs ⊗
ρeU , and then tracing out the environment to obtain the reduced density

matrix of the system ρ2 = tre
(
U †ρs ⊗ ρeU

)
. If the system interacts in

a Markovian fashion with the environment then a similar operation can

be carried out at each time step in a quantum evolution and a final state

determined after a quantum algorithm, but non-Markovian noise is more

difficult to model. In either case, the end result will be that the quantum

state after the evolution will be less coherent and the success of the quantum

algorithm will be compromised.

To aid the computation of state evolution, the picture we have introduced

of taking a separable system and environment, jointly evolving them and

then tracing out the environment can be rewritten in the quantum operator

formalism. The evolution of a density operator ρ ∈ Cn×n can be expressed

with a quantum operator E , which is a map from Cn×n to Cm×m, where

m and n may be different. In order to make this an allowable quantum

operation, the map must be normalised in the sense that tr (E(ρ)) ≤ 1, the

map must apply linearly, and it must be completely positive (CP). That is,

as density matrices must be positive, the outcome of a quantum operation

(I ⊗ E)(ρ2 ⊗ ρ) must be positive, where ρ2 is any state in an additional

quantum system.

Choi’s theorem says that a completely positive map, such as the quantum

operators we have described, may be written in the operator sum notation:

E(ρ) =
∑
k

EkρE
†
k, (2.26)

where {Ek} are a set of operators called the Kraus operators where∑
k E
†
kEk ≤ I. The evolution in (2.26) can be considered as taking ρ and

replacing it with EkρE
†
k/tr

(
EkρE

†
k

)
with probability tr

(
EkρE

†
k

)
for each

k. We can thus think of noisy quantum evolution in the operator-sum rep-

resentation as a noisy quantum channel in which each of the Ek has a set

chance of being applied.

We now describe the approach normally taken to analyse the noisy evolu-

tion of circuits. At the simplest level, general one qubit noise-models acting

on each qubit are often considered instead of specific noise models moti-
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vated by the behaviour of specific physical systems. Correlated noise acting

on larger numbers of qubits is physically more unlikely and so is not usually

considered. We will consider several one-qubit noisy quantum channels.

Bit flip channel

The bit flip channel has Kraus operators:

E0 =
√
pI, E1 =

√
1− pX, (2.27)

and represents an evolution in which with probability p a quantum state

will have its bit flipped while with probability 1− p it will be unchanged.

Phase flip channel

The phase flip channel has Kraus operators:

E0 =
√
pI, E1 =

√
1− pZ, (2.28)

and so has a probability p of the phase of a qubit being flipped.

Bit-phase flip channel

The bit-phase flip channel has Kraus operators:

E0 =
√
pI, E1 =

√
1− pY =

√
1− p iXZ, (2.29)

and encodes a probability of both a bit and phase flip occurring on a qubit

with probability p.

Depolarising channel

The depolarising channel is given by a quantum operation E , whose action

is given by:

E(ρ) = p
I

2
+ (1− p)ρ. (2.30)

The channel thus represents the qubit being replaced by a completely mixed

state with a probability p and untouched with probability 1 − p. We can



2.6. Decoherence 28

rewrite (2.30) as:

E(ρ) =

(
1− 3

4
p

)
ρ+

p

4
(XρX + Y ρY + ZρZ) , (2.31)

and so we can interpret the depolarising channel as having a fixed probability

of applying a X, Y or Z matrix to a qubit.

While the first three quantum channels we have described may not seem

to adequately encode any likely physical behaviour, they are useful for the

analysis of any other single qubit quantum noise. To see this, we note

that {I,X, Y, Z} constitutes a complete basis for one qubit operators and

so any one qubit operator may be expressed as a linear combination of

these operators. Some appreciation for the affect of general one qubit noise

can thus be gained for the knowledge of how the bit flip, phase flip and

bit-phase flip channels affect a quantum computer. In this thesis, we will

consider quantum noise which acts independently on each qubit. We will

consider the bit flip, phase flip, bit phase flip and depolarising channels. To

model the effect of this quantum noise, we will use a technique called error

expansion [111, 47]. That is, the evolution of a noisy quantum circuit with

independent noise on each qubit may be represented by a sum of the pure

state evolutions of quantum circuits with error operators placed at fixed

points in the circuits, weighted by their probabilities of occurring. As such,

we will perform stochastic pure state evolutions of quantum circuits with

fixed probabilities of errors (X, Y or Z gates) occurring at each time step.

By summing the probabilities of success of these stochastic pure states for

a sufficiently large random sample, we will obtain a good approximation to

the results of the mixed state evolution. We note that while such an average

gives meaningful information about the behaviour of a noisy circuit, any

individual stochastic pure state simulation does not reflect a quantum state

reached by the quantum computer.

Other kinds of quantum errors may be modelled by similar processes.

For example, the imperfect operation of gates may be coherent, in which

case the imperfect gate must be changed but the state will remain pure.

Incoherent imperfect gate applications may be simulated stochastically with

similar techniques to those used to simulate single qubit noise. That is,

an imperfect gate is randomly chosen for each simulation with probability

given the the probability the gate has of occurring (this can be obtained
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from considering the gate as a quantum operation and calculating the Kraus

operators). Summing over a large number of these stochastic simulations

will allow results about the quantum evolution to be calculated. We will

not consider imperfect gates or other forms of error in this thesis, however

they may be found in many past results.

While it is inevitable in any physical quantum computer that noise will

occur and the computer will not behave perfectly, it is theoretically possible

to correct quantum errors and run a quantum computer fault tolerantly. The

completeness of the {I,X, Y, Z} basis is particularly important for quantum

error correction. That is, as each Kraus operator of any noisy channel may

be written as a sum of I,X,Z and Y = iXZ, it is possible to show that if a

quantum computer is robust against X and Z errors, it is robust against any

single qubit quantum noise. Error correction codes seek to bring about this

robustness and involve encoding logical qubits in larger numbers of physical

qubits. We will not simulate error correction codes in this thesis, but they

are often simulated in order to determine what probability of qubit failure

they are robust against. An introduction to and survey of this field may be

found in [56].



Chapter 3

Matrix product states and

operators

In this chapter we will provide an introduction to matrix product states

and matrix product operators. As these representations are used in the re-

mainder of this thesis to simulate quantum algorithms, we will review how

the representations work and how to perform calculations with them. Addi-

tionally, we will give a brief introduction to projected entangled pair states,

however we these will not be used in later chapters. Matrix product states

and operators and projected entangled pair states are examples of tensor

networks used to represent quantum systems. A more exhaustive introduc-

tion to these networks and survey of the literature regarding them can be

found in [112]. Additionally, while they are not relevant to this thesis, many

other kinds of tensor networks have been developed to describe and simu-

late quantum systems. Some examples are correlator product states [113],

tree tensor networks [114] and the multiscale entanglement renormalisation

ansatz [115, 116, 117].

3.1 Matrix product states

A pure quantum state of n qubits is written as:

|ψ〉 =
1∑

i1,...,in=0

ci1,...,in |i1〉 ⊗ . . .⊗ |in〉 (3.1)

30
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We can consider the coefficients ci1,...,in as a vector with 2n entries. Alterna-

tively, we can also consider c as a tensor with n indices, each corresponding

to one qubit and of dimension 2. To recover a coefficient, we set each index

to the required value (0 or 1) and the resulting value in the tensor is the

coefficient of the quantum state in that computational basis state. The total

number of coefficients, as well as the appropriate ordering in the vector, can

be derived from this tensor because of its tensor product structure.

A tensor with n indices, each corresponding to one qubit, will contain

more information than is needed to uniquely specify a quantum state which

is not fully entangled. To illustrate this, consider n qubits, each in a state

a|0〉+ b|1〉, where both a and b are nonzero:

|ψ〉 = (a1|0〉+ b1|1〉)⊗ (a2|0〉+ b2|1〉)⊗ . . .⊗ (an|0〉+ bn|1〉) (3.2)

This state is separable, and the state of each of the constituent systems

does not depend on the state of any other constituent system. As such, we

could represent each qubit individually by a dimension 2 vector, and the

overall quantum state would be uniquely specified by n such vectors. This

gives a total storage cost of O(2n). However, each of the 2n computational

basis coefficients of this n qubit system will be nonzero, and so a naive

representation of the tensor ci1,...,in will require space O(2n). The full state

tensor is clearly a non-optimal way to represent or perform calculations on

this state.

In this trivial example (3.2) is the most efficient representation of the

state. This is because the state is separable and so has no entanglement.

However, a general quantum state will have entanglement and will not be

as straightforward to represent. Nonetheless, we can extend the technique

used above to a more general way of representing states efficiently. To do

this, we note that (3.2) can be written as

|ψ〉 =
∑
i1,...,in

C
[1]
i1
C

[2]
i2
. . . C

[n]
in
|i1〉 ⊗ |i2〉 ⊗ . . .⊗ |in〉, (3.3)

and so it is clear that the overall tensor ci1,...,in is formed from a product of

n tensors (tensors with one dimension are more commonly called vectors).

This is a simple example of a matrix product state. We generalise this

example by allowing each constituent tensor to have three dimensions, and
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so we have a product of higher dimensional tensors:

|ψ〉 =
∑
i1,...,in

∑
α1,...,αn−1

Γ
[1]α1

i1
Γ
[2]α1α2

i2
. . .Γ

[n−1]αn−2αn−1

in−1
Γ
[n−2]αn−1

in

|i1〉 ⊗ |i2〉 ⊗ . . .⊗ |in〉 (3.4)

Each of the αi here is an ancillary index that is summed over on two adjacent

tensors. This operation is simply tensor multiplication and is more familiar

in dimension 2 tensors as matrix multiplication. Together, the ancillary

indices specify a one-dimensional ordering of the constituent systems. As

such, this way of writing a quantum state is most appropriate for writing

states in which such an ordering is natural. It is possible to phrase quantum

computing entirely in terms of nearest neighbour interactions, and so in

this case a one dimensional ordering of the quantum states is reasonable.

The dimensionality of a quantum computing system is important for other

properties such as the number of qubits required or the ability to implement

error correction, so higher dimensional orderings will be required in these

cases.

Within a one dimensional ordering, each ancillary index (henceforth re-

ferred to as a bond) specifies a bipartition of the quantum state. Bond sizes

larger than one can be used to contain information about entanglement

within the state.

Γ[1] Γ[2] Γ[3] Γ[4] Γ[5]
α1 α2 α3 α4

i1 i2 i3 i4 i5

Figure 3.1: A pictorial representation of a MPS with five qubits.

Matrix product states and other tensor networks are often represented

pictorially. Such a diagram is shown in figure 3.1. In this diagram, a tensor

is represented by a square (or other filled geometric shape) with a number of

lines emanating from it. Each of these lines represent one index in the tensor.

Lines linking two separate tensors correspond to indices that are summed

over to obtain a final coefficient. Lines which adjoin only one tensor are

indices which are not summed over. In this case these indices represent the

quantum states of the individual qubits.
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3.1.1 Freedom in the MPS representation

In the general statement of a matrix product state (3.4) we have not specified

the sizes of the bonds being summed over. It is clear that given this omission,

there are a large number of different MPSs conforming to (3.4) which will

encode the same quantum state. Indeed, given an MPS written as

|ψ〉 =
∑
i1,...,in

A
[1]
i1
A

[2]
i2
. . . A

[n−1]
in−1

A
[n]
in
|i1, i2, . . . , in−1in〉, (3.5)

we can change the tensors while leaving the state invariant by multiplica-

tions:

|ψ〉 =
∑
i1,...,in

A
[1]
i1
X [1]

(
X [1]

)−1
A

[2]
i2
X [2]

(
X [2]

)−1
. . .

A
[n−1]
in−1

X [n−1]
(
X [n−1]

)−1
A

[n]
in
|i1, i2, . . . , in−1in〉. (3.6)

=
∑
i1,...,in

B
[1]
i1
B

[2]
i2
. . . B

[n−1]
in−1

B
[n]
in
|i1, i2, . . . , in−1in〉, (3.7)

where, for example, B[2] = X [1]−1A
[2]
i2
X [2]. The matrices X [i] do not need

to be square, but they do need to be right invertible. That is:

X [i] X [i]−1 = I, X [i]−1X [i] 6= I (3.8)

Allowing these matrices to be non-square allows the sizes of the bonds to

change. Using a non-square matrix will increase bond sizes and will lead to

less optimal encodings of quantum states. This freedom was first described

in [118], where it is also shown that multiplying by matrices as shown here

is a completely general description of the freedom present in the MPS rep-

resentation.

Schmidt Decomposition

The optimal bond size in a MPS is motivated by considering the Schmidt

decomposition of a state. Given a state |ψ〉 and a bipartition of the its

constituent qubits A : B which is associated with two Hilbert spaces HA
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and HB, the state can be written in the form:

|ψ〉 =
∑
i

λi|αi〉 ⊗ |βi〉, (3.9)

where {|αi〉} and {|βi〉} are orthonormal bases of vectors in HA and HB

respectively. The coefficients λi are non-negative and are known as the

Schmidt coefficients. The number of nonzero coefficients is known as the

Schmidt rank of the state. The vectors {|αi〉} and {|βi〉} are known as the

Schmidt vectors. The orthogonality of the basis vectors in (3.9) places an

upper bound on the Schmidt rank of any state of max(dA, dB), where dA

and dB are the dimensions of HA and HB respectively.

The Schmidt rank of a pure state |ψ〉 is a measure of the entanglement

of the state. A state with Schmidt rank one is separable and so has no

entanglement while a state with higher Schmidt rank requires additional

parameters to be specified in order to encode the state. Critically, the

Schmidt rank of a state |ψ〉 is the minimum number of coefficients needed to

write the state in the form (3.9). A MPS encodes a state in a one dimensional

form and so every bond corresponds to a bipartition of the state. As such,

the Schmidt rank provides the minimum bond size required to represent

a state as a MPS at each bipartition. The Schmidt decomposition thus

provides a way of encoding a MPS maximally efficiently. In order to outline

an algorithm to write a MPS in this way for a given state, we will first

review the relationship between the Schmidt rank and the singular value

decomposition (SVD).

The SVD is used in order to prove that every state can be written in

the form (3.9). To review this relationship, we first write a state |ψ〉 over a

bipartition A : B as a two-dimensional tensor:

|ψ〉 =
∑
i,j

Ci,j |ai〉 ⊗ |bj〉, (3.10)

where {|ai〉} and {|bj〉} form orthonormal bases for HA and HB respectively.

By using the SVD, we can express the dA × dB complex matrix C as the

product of the form:

C = UΣV∗, (3.11)
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where U is a dA × dA complex unitary matrix, Σ is a dA × dB real non-

negative diagonal matrix and V∗ is a dB × dB complex unitary matrix.

The diagonal entries of Σ are known as the singular values of the matrix C.

Because of the size of C, there are min(dA, dB) non-negative singular values.

We can thus rewrite (3.11) as

Cj,k =
∑
i

UjiΣiV
∗
ik. (3.12)

In this form, we can draw a connection between (3.9) and (3.11):

λi = Σi, |αi〉 =
∑
j

Uju|aj〉, |βi〉 =
∑
k

V ∗ik|bk〉. (3.13)

And so the Schmidt decomposition is a rephrasing of the singular value

decomposition. That {|αi〉} and {|βi〉} are orthonormal sets follows simply

from the properties of the matrices U and V∗.

Canonical Representation

The canonical representation of a MPS and its use in simulating quantum

circuit were first proposed by Vidal in [40]. We follow his approach here.

We start with a state which we wish to write as a MPS:

|ψ〉 =
∣∣∣Ψ[1...n]

〉
=

1∑
i1,...,in=0

ci1,...,cn |i0〉 ⊗ . . .⊗ |in〉. (3.14)

We first perform a SVD between the first qubit and the other qubits:

|ψ〉 =
∑
α1

λ[1]α1

∣∣∣Ψ[1]
α1

〉∣∣∣Ψ[2...n]
α1

〉
. (3.15)

Writing the Schmidt vectors of the first qubit
∣∣∣Ψ[1]

α1

〉
in the computational

basis of the first qubit (which occurs naturally if the SVD is performed in

this basis) gives:

|ψ〉 =
∑
α1

Γ
[1]α1

i1
λα1 |i1〉

∣∣∣Ψ[2...n]
α1

〉
. (3.16)

The following three steps are then iterated to obtain a MPS:
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1. Each Schmidt vector
∣∣∣Ψ[2...n]

α1

〉
is written in the local basis of its left-

most qubit: ∣∣∣Ψ[2...n]
α1

〉
=
∑
i2

|i2〉
∣∣∣τ [3...n]α1i2

〉
. (3.17)

2. We perform a Schmidt decomposition on each of the resulting vectors∣∣∣τ [3...n]α1i2

〉
. We thus write each τ vector in terms of the largest number

of nonzero singular values resulting from these decompositions:∣∣∣τ [3...n]α1i2

〉
=
∑
α2

Γ[2]i2
α1α2

λ[2]α2

∣∣∣Ψ[3...n]
α2

〉
. (3.18)

3. Substitute (3.17) and (3.18) into the previous expression (3.16):

|ψ〉 =
∑
α1

∑
α2

Γ
[1]α1

i1
λα1Γ

[2]α1α2

i2
λα2 |i1〉|i2〉

∣∣∣Ψ[3...n]
α2

〉
. (3.19)

If we iterate these steps, we can remove qubits from the larger right hand

side tensor one by one until we are left with a MPS representation:

|ψ〉 =
∑
i1,...,in

∑
α1,...,αn−1

Γ
[1]α1

i1
λα1Γ

[2]α1α2

i2
λα2 . . .

Γ
[n−1]αn−2αn−1

in−1
λαn−1Γ

[n]αn−1

in
|i1, . . . , in〉, (3.20)

and so any state |ψ〉 of maximal Schmidt rank χ can be written as a MPS

with bond rank at most χ.

The form (3.20) is slightly different from the ones we have quoted earlier

in that the bonds now contain the vectors of their singular values. However,

the forms can easily be made equivalent by multiplying the vectors into the

tensors either to their left or their right. Additionally, it is advantageous

to leave the vectors in the bonds because the singular values along each

bipartition provide information about the state at that bipartition. In par-

ticular, the size of each of the singular values shows how much entanglement

is contained in that particular bond element. As such, the canonical repre-

sentation provides us an easy way of making our MPS smaller on a given

bipartition while keeping the most pertinent information to the dynamics of

the system. In this representation, we delete every bond element which is
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smaller than a certain size. We must then renormalise the bond as follows:

d∑
αi=1

Γ
[i]αi−1αi
i λ[i]αiΓ

[i+1]αiαi+1

i+1 →
d′∑

αi=1

Γ
[i]αi−1αi
i λ

′[i]
αi Γ

[i+1]αiαi+1

i+1 , (3.21)

where λ
′[i]
j = λ

[i]
j

(∑d
αi=1 λ

[i]2
αi

)
/
(∑d′

αi=1 λ
[i]2
αi

)
.

We have made no assumptions about the quantum state in describing

the algorithm to decomposed it as a MPS, and so any quantum state can be

written in the form (3.20). The MPS form obtained after this decomposition

is often described as the canonical form for open boundary condition MPSs

(OBC-MPS). In terms of the freedoms available in the MPS representation,

it is shown in [40, 118] that if a state is written as a MPS with the for-

mat (3.5), then if the following gauge conditions are fulfilled the state is in

canonical form:

1.
∑

iA
[m]
i A

[m]†
i = Idm for all 1 ≤ m ≤ n.

2.
∑

iA
[m]†
i Λ[m−1]A[m]i = Λ[m], for all 1 ≤ m ≤ n.

3. Λ[0] = Λ[n] = 1 and Λ[m] is a dm+1× dm+1 diagonal matrix of full rank

and with trace one.

It is also shown in [118] that any OBC-MPS in the form (3.5) can be mul-

tiplied by matrices as detailed above in section 3.1.1 to obtain a OBC-MPS

in canonical form.

3.1.2 Calculations with MPSs

Contraction

Given a MPS, any required coefficient in the computational basis may be

found by setting each of the open indices to specify which coefficient is

required, and then contracting the tensors one by one. If we take the general

MPS form specified in (3.4) and require the coefficient of the computational

basis state |j1j2 . . . jn〉, this can be written as:

cj1,j2,...,jn =
∑

α1,...,αn

Γ
[1]α1

j1
Γ
[2]α1α2

j2
Γ
[3]α2α3

j3
. . .Γ

[n]αn−1

jn
(3.22)

=
∑

α2,...,αn

(∑
α1

Γ
[1]α1

j1
Γ
[2]α1α2

j2

)
Γ
[3]α2α3

j3
. . .Γ

[n]αn−1

jn
. (3.23)
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In (3.22) we recognise Γ[1] as a vector of size d1, which is the size of the

bond α1. The operation of summing over α1, the result of which is placed

in brackets in (3.23), can thus be described as multiplying the vector Γ[1]

by the matrix Γ[2]. The result is a vector of size d2, the size of the bond α2.

Summing over α2 will require another vector-matrix operation, and so on

until the coefficient is obtained. This procedure of summing over the bonds

one by one and each time obtaining a new tensor is called contraction. The

first three steps of the contraction of a five qubit state is shown in figure

3.2, where we denote selecting an index i for each tensor by a series of red

squares. It is also evident from this diagram that the contraction process

amounts to multiplying a series of vectors by matrices.

Γ[1]

λ[1]

Γ[2]

λ[2]

Γ[3]

λ[3]

Γ[4]

λ[4]

Γ[5]

i1 i2 i3 i4 i5

Γ[1]λ[1]Γ[2]

λ[2]

Γ[3]

λ[3]

Γ[4]

λ[4]

Γ[5]

i3 i4 i5

Γ[1]λ[1]Γ[2]λ[2]Γ[3]

λ[3]

Γ[4]

λ[4]

Γ[5]

i4 i5

Figure 3.2: The first three steps in the contraction of a five qubit MPS.

The time required to sum over an index is the on order of the product

of the sizes of each index in the two tensors involved which are not summed

over, multiplied by the size of the summed index. The operation in brackets

in (3.23) thus takes time O(d1d2), where d1 is the size of the ancillary di-

mension α1 and d2 is the size of the ancillary dimension α2. The following

operation, summing over α2, will take time O(d2d3) where d2 and d3 are de-

fined similarly to d1 and d2. The total time required to obtain a coefficient

in this state is thus O
(∑n−2

i=1 αiαi+1

)
. If most of the bonds in a state have

the same dimension of d, this gives a time required to obtain a coefficient of

O(nd2), where n is the number of qubits.
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Operators

It is important when using an MPS for simulations in quantum computing

that the representation can be easily updated after applying quantum op-

erators. The efficiency of applying operators with the MPS form (3.4) was

shown in [40].

If we have a MPS representation and want to apply a one qubit gate

U =
∑

a,b Ua,b|a〉〈b| to qubit k, we have:

U|ψ〉 =
∑
a,b

∑
i1,...,in

∑
α1,...,αn−1

Ua,bΓ
[1]α1

i1
. . . λ[k−1]αk−1

Γ
[k]αk−1αk
ik

λ[k]αk . . .Γ
[n]αn−1

in

|i1, . . . , ik−1〉 ⊗ |a〉〈b|ik〉 ⊗ |ik+1, . . . , in〉 (3.24)

=
∑
i1,...,in

∑
α1,...,αn

Γ
[1]α1

i1
. . . λ[k−1]αk−1

Γ
′[k]αk−1αk
ik

λ[k]αk

. . .Γ
[n]αn−1

in
|i1, . . . , ik, . . . , in〉, (3.25)

where Γ
′[k]αk−1αk
ik

=
∑

a Uik,aΓ
[k]αk−1αk
a . This procedure is shown in fig-

ure (3.3) for a small region of a larger MPS. Only a single tensor is being

changed, and so this application takes time O(d1d2) where d1 and d2 are the

bond dimensions on the left and right of tensor k respectively.

Γ[j]

λ[j−1]

Γ[j]

λ[j+1]

Γ[j+1]

U

. . . . . . Γ[j−1]
λ[j]

Γ
′[j]

λ[j+1]

Γ[j+1]. . . . . .

Figure 3.3: The application of a single qubit operator U to a MPS.

The application of a two qubit gate to a MPS is slightly more compli-

cated. To multiply the gate by the state on qubits j, j + 1, the tensors

corresponding to these two qubits must be contracted:

Γ
[j]αj−1αj
ij

λ[j]αjΓ
[j+1]αjαj+1

ij+1
→ A

αj−1αj+1

ijij+1
. (3.26)

Once this has occurred the new combined tensor can be updated with the

gate U =
∑

i1,j1,i2,j2
Ui1,i2,j1,j2 |j1, j2〉〈i1, i2|:

A
αj−1αj+1

ijij+1
→ A

′αj−1αj+1

ijij+1
=
∑
ab

A
αj−1αj+1

ab Ua,b,ij ,ij+1
. (3.27)
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Finally, the updated tensor A
′αj−1αj+1

ijij+1
is decomposed via a SVD into a new

set of tensors and a vector:

A
′αj−1αj+1

ijij+1
→ Γ

′[j]αj−1αj
ij

λ
′[j]
αj Γ

′[j+1]αjαj−1

ij+1
. (3.28)

This procedure is shown in figure 3.4.

Γ[j]

λ[j]

Γ[j+1]

U

. . . . . . A

U

. . . . . .

A′. . . . . .

Γ
′[j]

λ
′[j]

Γ
′[j+1]. . . . . .

Figure 3.4: The application of a two qubit gate to a MPS.

The most time consuming steps in this operation are the initial contrac-

tion of two adjacent tensors and the SVD. The first of these steps takes time

O(d1d2d3) where d1, d2 and d3 are the left, middle and right bonds in the

two tensor system. The second step takes time O(max(d1, d2)min(d1, d2)
2).

As such, if the bonds have a common size of χ, applying a two qubit gate

to a MPS will take time O(χ3).

Similarity between different MPSs

The question naturally arises when dealing with MPSs whether two MPSs

encode the same quantum state. If both MPSs are in the canonical repre-

sentation, it is straightforward to compare the tensors and vectors one by

one. If each tensor or vector in one MPS is the same (up to computational

accuracy) as the corresponding tensor or vector in the other MPS, then the

two states are the same.

However, if one or both of the MPSs is not in the canonical gauge, the

MPSs may encode the same state if their constituent tensors and vectors

are different and if their bond dimensions are different. In this case, it is

possible to compare each coefficient of the MPS individually by contraction.

However, the time required to do this scales exponentially with the size of the

system and this does not exploit the properties of the MPS representation

which make it beneficial for simulation. A better approach is to compute

a distance metric between the two MPS quantum states being considered.
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The easiest distance metric to compute is the inner product between the

two states. As MPSs encode pure states, this is equivalent to calculating

the fidelity between the two states.

We will consider how to calculate the inner product between two states:

|ψ〉 =
∑

α1,...,αn

∑
i1,...in

Γ[1]α1λ[1]α1
. . .Γ

[n]αn−1

in
|i1, . . . , in〉

|φ〉 =
∑

β1,...,βn

∑
j1,...jn

Θ[1]α1υ
[1]
β1
. . .Θ

[n]βn−1

in
|j1, . . . , jn〉.

Taking the inner product 〈ψ|φ〉 will cause a product 〈im|jm〉 = δimjm for

each qubit m, and so we need to contract over the indices {im} and the cor-

responding {jm} to form the inner product. Together with the sums over the

ancillary indices, this gives us a tensor network to contract to calculate the

inner product, shown in figure 3.5. The most efficient contraction pattern

Γ[1]

λ[1]

Γ[2]

λ[2]

Γ[3]

λ[3]

Γ[4]

Θ[1] ∗
υ[1]

Θ[2] ∗
υ[2]

Θ[3] ∗
υ[3]

Θ[4] ∗

Figure 3.5: A tensor network to calculate the inner product of two MPSs.

will depend upon the dimenions of the bonds. A generally efficient contrac-

tion can be performed by moving from left to right using a pattern shown

in figure 3.6. As the tensor being contracted into only ever has two bonds

to neighbouring tensors (as well as a quantum state index in common), this

contraction will take time O(nmin(d1, d2) max(d1, d2)
2) where d1 and d2 are

the maximum bond sizes of |ψ〉 and |φ〉 respectively and n is the number of

qubits (which much be the same in both states).

λ[1]

Γ[2]

λ[2]

Γ[3]

λ[3]

Γ[4]

υ[1]

Θ[2] ∗
υ[2]

Θ[3] ∗
υ[3]

Θ[4] ∗

λ[2]

Γ[3]

λ[3]

Γ[4]

υ[1]

Θ[2] ∗
υ[2]

Θ[3] ∗
υ[3]

Θ[4] ∗

λ[2]

Γ[3]

λ[3]

Γ[4]

υ[2]

Θ[3] ∗
υ[3]

Θ[4] ∗

Figure 3.6: The first three steps of the efficient contraction of the inner
product of two MPSs.
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Expectation Values

Given a quantum state represented as a MPS, we often want to compute the

expected value of an operator applied to the state. To show how this calcu-

lation can be performed, we first consider the calculation of the expectation

value of a two qubit operator 〈Û〉 = 〈ψ|Û |ψ〉. We can regard |φ〉 = Û |ψ〉,
and so 〈Û〉 = 〈ψ|φ〉. As such, the computation of the expected value of Û

involves applying Û to a copy of |ψ〉, and then taking an inner product with

|ψ〉. The first of these operations has cost O(χ3), where χ is the maximal

Schmidt rank of |ψ〉, and the second operation has cost O(nχ3). This gives

an overall cost for the calculation of O(nχ3).

Γ[1]

λ[1]

Γ[2]

λ[2]

Γ[3]

λ[3]

Γ[4]

U

Γ[1] ∗
λ[1]

Γ[2] ∗
λ[2]

Γ[3] ∗
λ[3]

Γ[4] ∗

Figure 3.7: A tensor network to calculate the expectation value of a two
qubit unitary on a four qubit MPS.

We can regard larger unitary operators as sums and products of smaller

one and two qubit unitary operators. It is then clear that to calculate the

expected value of these operators you apply them to a state |ψ〉 and then

take an inner product with itself. As long as the quantum circuit whose

expectation value you are finding is of logarithmic depth and the value of χ

is small, this may be performed in an amount of time growing polynomially

with the number of qubits.

Density Matrices

To show how to calculate a one qubit density matrix of a qubit in a MPS,

we consider the Schmidt decomposition of a state

|ψ〉 =
∑
i

λi|ai〉|bi〉. (3.29)

If we label the bipartition over which this decomposition is created as A|B,

then it is straightforward to calculate the density matrices ρa, ρb by using
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the Schmidt decomposition (3.9):

ρa =
∑
i

λ2i |ai〉〈ai|, ρb =
∑
i

λ2i |bi〉〈bi|. (3.30)

And so we can see that if we are given the Schmidt decomposition of a state,

the density matrix of one part of the state does not depend on Schmidt

vectors of the other part of the state, only on the Schmidt coefficients and

the Schmidt vectors in the required subspace. Note that if we are given any

other decomposition of the state, then this is not in general true if the vectors

on each side of the decomposition are not orthogonal. As the canonical

form of the MPS specifies a state in terms of the Schmidt decomposition

over each bipartition, this means that the reduced density matrix from each

qubit depends only upon its local tensor and the vectors adjacent to it. The

tensor network required to calculate a one qubit density matrix is shown in

figure 3.8. This operation takes time O(χ2)

Γ[i]

Γ[i] ∗

λ[i−1]

λ[i−1]

λ[i]

λ[i]

Figure 3.8: The tensor network to calculate the one qubit reduced density
matrix of qubit i of a MPS in canonical form.

Density matrices of larger subsystems of a MPS can be calculated in

a similar way. First, the required subsystem is contracted until it is rep-

resented by a single tensor. The density matrix is then formed from this

tensor with exactly the same network as shown in figure 3.8, but the open

quantum state indices will have be a larger size than two.

3.1.3 An analytic example

We give an example of a state which has an analytic MPS representation in

order to further elucidate the operation of MPSs. The example we give is

the GHZ state which is given by:

|ψ〉 =
1√
2

(
|0〉⊗N + |1〉⊗N

)
. (3.31)
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A version of this state with n qubits can easily written as a MPS with bond

rank two, using a method similar to that which we will introduce in chapter

6.

Γ
[0]α0

i0
= δα0i0 , Γ

[n]αn−1

in
= δαn−1in ,

λ[0]α0
=

1√
2
, λ[m]

αm = 1 for all m 6= 0

Γ
[m]αm−1αm
im

= δαm−1αmδαmim for all m 6= {0, n} (3.32)

We can see from this example that this state has non-trivial entanglement

but it is easy to represent and perform calculations on with a MP3 represen-

tation. We note that it is also easy to represent this state without a MPS

as it only has two non-zero coefficients in the computational basis.

3.2 Projected entangled pair states

It is possible to generalise the MPS representations in several ways. One

natural generalisation is increase the number of ancillary indices connecting

to each tensor, allowing states with 2D, 3D and other higher dimensional

couplings to be represented more efficiently. Such a tensor network is called

a projected entangled pair state (PEPS) [64]. We show a pictorial repre-

sentation of a PEPS state with 16 quoits in two dimensions in figure 3.9 In

this thesis we will confine our simulations to one dimension, but we give an

overview of the properties of PEP states for completeness.

Some of the properties of MPSs also apply to PEPS. For example, by

allowing the bond sizes to grow exponentially with the size of the quantum

system any quantum state can be represented. However, the increased di-

mensionality of PEPSs causes some of their properties to differ from those

of MPSs. A notable difference is the difference in the computational com-

plexity of the two state representations. While MPSs may be contracted

efficiently, exact contraction of PEPSs is #P-complete [119]. In general,

there is no order in which the indices of a PEPS may be contracted for

which the computation time of the contraction will not scale exponentially

in the number of constituents of the quantum system. This difficulty ex-

tends to the computation of observables, which is straightforward in a MPS

but inefficient in a PEPS. Contractions in PEPSs must then be carried out

with approximations. For example, in [64] a scheme is presented in which
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Figure 3.9: A pictorial representation of a PEPS in two dimensions with 16
qubits.

a 2D PEPS is contracted by regarding the top row of the lattice as a MPS

and each remaining row as a MPO. The MPOs are contracted into the MPS

one by one, and each time the bonds in the MPS are truncated to stop its

size growing too large. A different approximate contraction scheme can be

found in [120].

3.3 Matrix product operators

A generalisation of the MPS formalism is to keep the linear connectivity of

the tensor network but to encode an operator rather than a state. Doing so,

an operator Ô may be written as

Ô =
∑

α1,...,αn

∑
i1,j1,...,in,jn

Θ
[1]α1

i1j1
γ
[1]
i1

Θ
[2]α1α2

i2j2
. . .Θ[n−1]αn−2αn−1

γ[n−1]αn−1
Θ

[n]αn−1

in−1jn−1
|j1, . . . , jn〉〈i1, . . . , in|. (3.33)

The resulting representation is called a matrix product operator (MPO). A

pictorial representation of a MPO is shown in figure 3.10. These operators

were introduced in [65, 66] in the context of extending DMRG to mixed

states. If a density matrix is written in this format, it is known as a matrix

product density operator (MPDO). MPOs have been used, for example,

to perform time evolution on MPSs [67, 68] and to study non-equilibrium

steady states [121]. As such, a large amount of work has been done on
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which kinds of Hamiltonians, or the exponentiation of Hamiltonians, can be

expressed efficiently as a MPO [67]. In particular, [122] presents an explicit

method of constructing MPOs for arbitrary Hamiltonians and shows the

representation to always be efficient for Hamiltonians composed of pairwise

interactions. However, little work has been done on using MPOs to simulate

quantum computing algorithms, the topic of this thesis.

Θ[1]

γ[1]

Θ[2]

γ[2]

Θ[3]

γ[3]

Θ[4]

γ[4]

Θ[5]

Figure 3.10: The pictorial representation of a five qubit MPO.

Similarly to MPSs, a canonical form can be found by applying a series

of SVDs. Instead of being the Schmidt ranks of a state, the singular values

are then the Schmidt numbers of the operator.

3.3.1 Calculations with MPOs

Many calculations in MPOs proceed in a similar way to the calculations

used in MPSs, so we will be more brief in outlining them here.

One and two qubit gates

Similarly to applying one qubit gates to a MPS, applying a one qubit gate

to a MPO at qubit number i involves updating only the tensor Θ[i] located

at site i. In contrast to the MPS case, there are two open indices per tensor

in a MPO, one each for the input and output of the operator at each qudit.

As such, the gate being applied can be multiplied into the top or bottom of

the MPO. The choice of which way to do this multiplication depends upon

the time ordering of the circuit or components of the operator in question:

gates applied to the top of the MPO happen at a time before that of any

yet applied gate while those applied to the bottom happen at a time later

than any yet applied gate.

The application of a two qubit gate to a MPO also proceeds in an anal-

ogous way to the application of a two qubit gate to a MPS. The steps are:

1. Combine two adjacent tensors Θ
[k]αk−1αk
ikjk

γ
[k]
αkΘ

[k+1]αkαk+1

ik+1jk+1
into a com-

bined tensor A
αk−1αk+1

ikjkik+1jk+1
.
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Θ[j−1]

γ[j−1]

Θ[j]

γ[j]

Θ[j+1]

U

. . . . . .

Θ[j−1]

γ[j−1]

Θ[j]

γ[j]

Θ[j+1]

U

. . . . . .

Figure 3.11: The application of a single qubit gate U to a MPO at the top
and bottom of the operator respectively.

2. Multiply the combined tensor by the gate being used. Here multiplying

above or below corresponds to contracting the ik, ik+1 and jk, jk+1

indices respectively.

3. Perform a SVD to split the new combined tensor into new individual

tensors Θ
′[k]αk−1αk
ikjk

γ
′[k]
αk Θ

′[k+1]αkαk+1

ik+1jk+1
.

Applying a MPO to a MPS

One of the reasons that MPOs are useful in simulating quantum systems is

that they can be directly applied to MPSs to simulate the action of a given

operator on a given state. This application produces a new MPS in which

each tensor is the product of a tensor in the original MPS and a tensor in

the MPO, each representing the same qubit. That is, for each l,

Γ
′[l]βl−1βl
il

= Γ
′[l]αl−1κl−1αlκl
il

=
∑
jl

Γ
[l]αl−1αl
jl

Θ
[l]κl−1κl
jlil

. (3.34)

where we have relabelled the ancillary indices to include those from both

the state and the operator. Similarly the vectors are transformed as

λ
′[l]
βl

= λ′[l]αlκl = λ[l]αlγ
[l]
κl
. (3.35)

This multiplication is shown pictorially in figure 3.11.

Γ[j−1]
λ[j−1]

Γ[j]

λ[j]

Γ[j+1]

Θ[j−1]

γ[j−1]

Θ[j]

γ[j]

Θ[j+1]

. . . . . .

. . . . . .

Γ′[j−1]
λ′[j−1]

Γ′[j]
λ′[j]

Γ′[j+1]. . . . . .

Figure 3.12: The application of a MPO to a MPS.

For each bond in the MPS with a bond size of χs and a corresponding
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bond size in the MPO of χo, the new MPS will have a bond size immediately

after the multiplication of χsχo, and so the affect of applying a MPO is a

multiplicative increase in the bond sizes of the MPS. The new MPS formed

may not be in canonical form, although it can be returned to this form by

a series of SVDs along each affected bond. As such, the new Schmidt rank

of the quantum state may be less than χsχo. Overall, the application of a

MPO to a MPS takes time O(nξ2oξ
2
s ) where ξo and ξs are the maximal bond

sizes of the MPO and MPS respectively.

The rank increase of the new MPS before being returned to canonical

form invites an interpretation of the Schmidt number of an operator as an

upper bound for the amount by which the Schmidt rank of a state can

increase upon application of the operator. If the MPO has bond rank d for

that bipartition, the Schmidt rank will be at most multiplied by d. However,

as stated above, in many cases the Schmidt rank after application will be

much lower than this.

Applying a MPO to a MPO

Analogously to the application of a MPS to a MPO, it is possible to apply

one MPO to another in order to create a new operator. The second MPO

may be any size, and so it is possible to apply a two qubit gate to a MPO,

for example, by determining its MPO form and then performing a series

of contractions between two MPOs. The resulting MPO will be in non-

canonical form and have bond dimensions which are the bond dimensions of

each of the product operators multiplied. The new operator can be returned

to canonical form by performing a series of SVDs. As with the application

of a gate to a MPS, a MPO may be applied to the top or bottom of another

MPO, depending on which operator takes place first physically.

Θ[j−1]

γ[j−1]

Θ[j]

γ[j]

Θ[j+1]

A[j−1]
ω[j−1]

A[j]

ω[j]

A[j+1]

. . . . . .

. . . . . .

Θ′[j−1]

γ′[j−1]

Θ′[j]

γ′[j]

Θ′[j+1]. . . . . .

Figure 3.13: The application of a MPO to another MPO.
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Adding MPOs

Operators are often written as a sum of other simpler operators. As such,

it is useful to be able to construct unknown MPOs by adding the MPO rep-

resentations of other operators whose MPO representations is known. This

is also necessary, for example, to perform a quantum operation which is

expressed as a set of Krauss operators on a density matrix. Tensor multipli-

cation tells us how to construct an operator as a product of other operators,

but not as a sum.

A straightforward way to add MPOs is to consider the linearity of op-

erator actions: Û |ψ〉 =
(
Û1 + Û2

)
|ψ〉 = Û1|ψ〉 + Û2|ψ〉. As such, we may

construct a tensor network which is the sum of two MPOs by introducing a

new index specifying which operator is being used at any one time:

Û =

 ∑
α1...αn−1

∑
i1...inj1...jn

A
[1]α1

i1j1
λ[1]α1

. . . λ[n−1]αn−1

A
[n]αn−1

injn
|i1 . . . in〉〈j1 . . . jn|

)

+

 ∑
β1,...,βn−1

∑
i1,j1,...,in,jn

B
[1]β1
i1j1

υ
[1]
β1
. . . υ

[n−1]
βn−1

B
[n]βn−1

injn
|j1 . . . jn〉〈i1 . . . in|

)
(3.36)

=
2∑
o=1

∑
α1...αn−1=1

∑
i1...inj1...jn

Θ
[1]oα1

i1j1
γ[1]oα1

. . . γ[n−1]oαn−1

Θ
[n]oαn−1

injn
|j1 . . . jn〉〈i1 . . . in|, (3.37)

where we have relabeled A
[k]αk−1αk
ikjk

= Θ
[k]1αk−1αk
ikjk

, B
[k]βk−1βk
ikjk

= Θ
[k]2αk−1αk
ikjk

,

λ
[k]
αk = γ

[k]1
αk and υ

[k]
βk

= γ
[k]2
αk and we have relabeled βk = αk for the tensors B

and the vectors υ. In order for the addition of this extra index to be correct,

we have to change the upper bound of each αk to be max(size(αk), size(βk)),

and set to zero any extra elements created in this process.

In a similar process to the relabeling of the ancillary indices when ap-

plying an MPO to a MPS or MPO, we can relabel the ancillary indices,

including o, in each tensor and vector in (3.37). That is, if the size of bond
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k is dk, set α′k = o dk + αk. Doing so allows us to rewrite (3.37) as:

Û =
∑

α′1...α
′
n−1=1

∑
i1...inj1...jn

Θ
[1]α′1
i1j1

γ
[1]
α′1
. . . γ

[n−1]
α′n−1

Θ
[n]α′n−1

injn
|j1 . . . jn〉〈i1 . . . in|, (3.38)

and so we have constructed a MPO which sums two constituent MPOs. It

will not be in the canonical form and will have a bond size of d1k + d2k for

each k, where d1k and d2k are the sizes of the kth bond in the first and second

MPOs respectively. The new MPO can be placed back in the canonical form

by doing a series of SVDs across each bond moving from left to right and

then again from right to left. The second series of SVDs is needed to ensure

that information from each tensor and bond reaches each other tensor and

bond.

To clarify the above method, we will provide an alternate explanation.

We consider each tensor as a matrix of one qubit operators, each of which

is not necessarily unitary. The location of each operator in this matrix is

given by its left and right bond indices:

A[k] =


A[k]1 1 . . . A[k]1 d

...
. . .

...

A[k]d 1 . . . A[k]d d

 . (3.39)

We are free to increase the size of any such matrix as long as we set any

added element to zero. If we have two MPOs, which at each site k have

left and right bond dimensions l1, r1 and l2, r2 respectively, we are thus free

to add additional unused elements to make the dimensions of the matrices
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(l1 + l2, r1 + r2).

A′
[k]

=



A[k]1 1 . . . A[k]1 d 0 . . . 0
...

. . .
...

...
. . .

...

A[k]d 1 . . . A[k]d d 0 . . . 0

0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . 0


(3.40)

B′
[k]

=



0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 B[k]1 1 . . . B[k]1 d

...
. . .

...
...

. . .
...

0 . . . 0 B[k]d 1 . . . B[k]d d


(3.41)

If we add these two matrices for every set of corresponding tensors in each

MPO we will then have a new MPO whose action is the sum of the actions

of the product MPOs.

A[k]1 1 . . . A[k]1 d1 0 . . . 0
...

. . .
...

...
. . .

...

A[k]d1 1 . . . A[k]d1 d1 0 . . . 0

0 . . . 0 B[k]1 1 . . . B[k]1 d2

...
. . .

...
...

. . .
. . .

0 . . . 0 B[k]d2 1 . . . B[k]d2 d2


. (3.42)

We can see from (3.42) that in effect, we can add two MPOs by adding

each of their tensors in block diagonal fashion. This can be extended to

an arbitrary number of MPOs, which can be added by adding the sets of

corresponding tensors in a block diagonal fashion, as long as consistent index

numbering rules are used.

3.4 Quantum Circuit Simulation

Quantum circuits can be simulated with a MPS by starting with a desired

input MPS and applying the required gates in order. Most quantum algo-
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rithms use a product state as input (many use a computational basis state),

and so it is easy to generate this input state for the simulation. At each

time step, each required one qubit quantum gate can be applied directly to

the MPS and each two or higher qubit gate can be applied by the method

specified in section 3.3.1. After applying the gate, it is optional whether or

not to decompose the combined quantum system the gate has applied to.

Instead, at any time two or more adjacent qubits can be combined into a

qudit and considered together. If a composite qubit system is decomposed

after applying a two qubit gate, it can be decomposed with several different

methods:

• A SVD may be used. This is the method that has been described

above in sections 3.3.1.

• Another decomposition such as the QR decomposition may be used.

Both rank revealing and non-rank revealing decompositions may be

used. Using such a decomposition will be beneficial if the compu-

tational resources required to perform it are less than those for the

SVD.

• If the bond rank is unimportant or it may be surmised from the quan-

tum circuit that it will be the maximum allowable rank given the

quantum dimensions of the qubits, a trivial decomposition may be

used:

Am×n =

{
Am×nIn×n, m ≥ n
Im×mAm×n, m < n

(3.43)

Performing a quantum circuit simulation with a MPO requires slightly

different techniques. A quantum circuit simulation will generally entail ap-

plying a quantum circuit to a particular input state. Such a simulation could

involve the use of MPSs and MPOs to increase the speed of the simulation.

A decision must then be made when setting up the simulation which parts

of the quantum circuit will be contracted into a MPO and which parts will

be applied to a given MPS state each time the simulation is performed.

Typically if multiple simulations are being performed, circuit sections which

are common to each simulation should be contracted into MPOs. However

the resulting MPO may become highly entangling while the MPS is only
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slightly entangled throughout the simulation. In this case contracting part

of the circuit into a MPO will slow down a simulation. In this way the en-

tangling properties of a quantum circuit are important in the determination

of whether forming a MPO will be a worthwhile exercise. There may also

be utility in forming a MPO of a circuit or algorithm to explicitly study

the properties of the MPO. By doing so the entangling properties of the

algorithm may be studied. We perform such analyses in chapters 4 and 6.

The initial state of a circuit simulation with a MPO is the identity matrix

on the required number of qubits. The n qubit identity matrix may be

encoded in a MPO by noting that it is separable and so can be decomposed

into n one qubit identity operators:

I [n] = I⊗N = I1 ⊗ . . .⊗ In. (3.44)

This identity MPO may be regarded as being situated at any time slice

within a quantum circuit. A time slice would pictorially be represented

as a vertical line cutting through a quantum circuit diagram. Any gates

after this time slice must be applied in order to the output indices of the

MPO. Similarly any quantum gates happening before this time slice must be

applied in reverse order to the input indices of the MPO. As long as each of

these orderings are preserved, no ordering is required between when gates are

applied to the input indices and when gates are applied to the output indices.

MPO simulations may also entail adding two (not necessarily unitary) MPOs

to produce a larger MPO of a unitary operator as well as applying MPOs

to other MPOs instead of applying gates to MPOs. Our statements about

time orderings apply in these cases as well. That is, a MPO of part of a

circuit may be applied to the input or output indices of another part of the

circuit as long as the overall time ordering is preserved.

3.5 Entanglement in matrix product states

Entanglement may be considered as a quantum correlation existing between

two different parts of a quantum system. MPSs are MPOs are a way of

writing quantum states and operators in a way in which all information is

presented locally with the bonds representing quantum and classical corre-

lations. As such, MPSs and MPOs present natural encodings of quantum
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states and operators if information about entanglement and correlations is

required.

MPSs are written in a way that elucidates the amount of entanglement

is a system after few or no calculations. The Schmidt rank of a system

along a particular bipartition provides a coarsely grained measurement of

the amount of entanglement between two halves of a system. The Schmidt

rank is the bond rank of a MPS and so there is a direct connection between

the size of the bonds and the amount of entanglement in the corresponding

state. A set of Schmidt coefficients of a state {ci} directly translates into

eigenvalues of the reduced density matrix {|ci|2} after tracing out the sub-

system corresponding to either half of the bipartition. As such, the entropy

of entanglement of a MPS along a bipartition may be calculated from the

vector of coefficients on the corresponding bond λ
[m]
αm provided the MPS is

in the canonical gauge:

S = −
∑
αm

|λ[m]
αm |

2 log |λ[m]
αm |

2. (3.45)

While the Schmidt rank of a state is a measure of the amount of en-

tanglement in the state, the Schmidt number of an operator does not have

as straight-forward an interpretation. An operator with a high Schmidt

number may have a high amount of classical correlating power but little

entangling ability. This is illustrated in the case of two-qubit unitary oper-

ations by the SWAP gate, which has the Schmidt-operator decomposition

1/2(I ⊗ I + X ⊗ X + Y ⊗ Y + Z ⊗ Z). The Schmidt number of four is

the maximum possible for a two-qubit operator, but the gate has no entan-

gling power. As such, if a MPO has high bond ranks it is not necessarily

a highly entangling operator. As noted in section 3.3.1, an interpretation

of the Schmidt number of an operator is an upper bound on the amount

by which the Schmidt rank of a state will increase upon application of the

operator.

There are two measures of correlating ability which can be directly cal-

culated from a MPO. Firstly, the Hartley Strength [123] of an operator is

given by log2(s) where s is the maximal Schmidt number of the operator.

The maximal Schmidt number of an operator is the maximal bond rank of

the MPO in the canonical gauge. The singular values {si} of an operator

along any bipartition allow a probability distribution to be derived given by
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pi = s2i /D where D is the dimension of the Hilbert space the operator acts

in. The second measure of correlating ability is the Schmidt strength, which

is defined to be the Shannon entropy of this probability distribution [123]:

Ksch(U) = −
∑
i

(
s2i
D

)
log2

(
s2i
D

)
. (3.46)

The Schmidt strength is the maximum entropy of the probability distribu-

tion following from the singular values of an operator U along any biparti-

tion. It also gives the maximum entropy E(U |α〉|β〉) where |α〉 and |β〉 are

states in two different quantum systems corresponding to any bipartition

of the operator U . The states |α〉 and |β〉 are maximally entangled with

ancillary systems. As the singular values of an operator along bipartition

are contained in the bond vectors in a MPO, the calculation of (3.46) along

any bipartition is straightforward given the canonical MPO decomposition

of the operator in question.

3.5.1 Area Laws

The popularity of MPS representations in condensed matter calculations

is grounded in the connection between the size of the MPS representation

of a state and the amount of entanglement in the state. While this con-

nection allows for efficient classical simulation of quantum states with little

entanglement, it also makes the MPS representation a good basis for an

ansatz of a condensed matter ground state. Many physical states arise from

local interactions and so the ground states of these systems are typically

less entangled than most of the states found in their Hilbert spaces. This

notion is made precise through an area law. That is, given two regions,

the entanglement entropy between them for many Hamiltonians scales lin-

early (with a possible logarithmic correction) with the area of the interface,

rather than the volumes, of the regions. For a one-dimensional system, the

interface between two halves of a system is a single point. As such, one-

dimensional states which obey an area law are precisely those whose ground

states can be represented efficiently with a MPS. A MPS will thus provide

a very good variational ansatz for determining the ground state of a given

Hamiltonian to which an area law applies. This is the reason for the success

of density matrix renormalisation group techniques, which can be considered
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as performing variational minimisation with a tensor network ansatz [124].

Similar statements can be made about two dimensional systems, in which

PEPS representations are effective encodings of states which obey an area

law. There are many results concerning which systems an area law apply

to, but this topic is not of primary relevance to this thesis. An introduction

to and review of area law results may be found in [125].



Chapter 4

Simulation of the quantum

Fourier transform

In this chapter, we will numerically represent the quantum Fourier trans-

form (QFT) in the matrix product operator format. We will principally be

concerned with the complexity of such a representation and the implications

of this for the numerical difficulty of performing a simulation. We find that

the number of elements in each operator bond grows as O(log n) as the num-

ber of qubits n increases, and so simulation of the QFT applied to a MPS

with Schmidt rank χ takes O(n(log n)2χ2) time. Section 4.1 will summarise

existing classical simulation results for the QFT and section 4.2 will outline

our approach. Sections 4.3 and 4.4 will present out results with respect to

the time required for QFT simulation and its accuracy. Sections 4.6, 4.5

and 4.7 will discuss the reasons for this scaling and its implications.

4.1 Previous QFT simulation results

The QFT is the most intuitively quantum mechanical part of Shor’s algo-

rithm. That is, it contains Hadamard and controlled phase-rotation gates,

neither of which have a classical analogue. The full QFT with an arbitrary

input state does not display any of the features found in previous studies

to allow efficient classical simulation. Despite this, the approximate QFT

(AQFT) is efficiently classically simulatable for input states with limited en-

tanglement. This was first shown in [126, 127] using a tensor contraction sim-

ulation method. Together with results showing that the AQFT is sufficient

57
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for many computational tasks including Shor’s algorithm [100, 128, 129, 130],

this result is sufficient to show that the QFT is efficiently classically simu-

latable to high fidelity for a limited class of input states. It was shown in

[131] using matrix product states that a terminating QFT can be efficiently

simulated for any input state with limited entanglement. Additionally, in

[132] a classical algorithm to obtain the results of the QFT on separable

states is derived. That this algorithm is simpler than the QFT suggests

that the quantum speedup of the QFT lies in the quantum parallelism of its

input state rather than its innate complexity.

A more general result is presented in [71, 72], where it is shown that a

normalizer circuit can be simulated in polynomial time with a restriced set

of inputs over an arbitrary abelian group:

G = Zd1 × · · · × Zdm , (4.1)

where each Zdi is a cyclic group formed from integer addition modulo i. In

this group, a normalizer circuit is defined to be one containing a polyno-

mially deep set of operations, including adaptive operations conditioned on

measurement:

• Quantum Fourier transforms on any Zdi :

Fi =
1√
di

∑
e2πixy/di |x〉〈y|. (4.2)

• Gates formed from automorphisms on the group G. These correspond

to unitary permutations on the standard computational basis.

• Quadratic phase gates, which correspond to applying a complex phase

to every element g ∈ G.

These results generalize the Gottesman-Knill theorem and allow the efficient

classical simulation of a circuit containing a polynomial number of QFTs

as well as other gates which can generate large amounts of entanglement.

Additionally, the resetricted set of input states in [71, 72] are much broader

than in earlier work.

In this chapter, we use matrix product operators to simulate the quantum

Fourier transform. Our numerical results imply that for weakly entangled

input states over n qubits, the resources required for this simulation scale as



4.2. Circuit and simulation methods 59

O(n (log(n))2), a significant improvement on earlier results. The simulation

tools we use are also more straightforward than tensor contraction methods

such as the ones used in [126, 127], and can easily be applied to many

different states.

4.2 Circuit and simulation methods

As described in section 2.4, the quantum Fourier transform (QFT) can be

written in operator form:

1√
N

N−1∑
j,k=0

e2πijk/N |j〉〈k|. (4.3)

This equation can be expanded to give output values at individual qubits:

|j1, . . . , jn〉 →
1

2n/2
(
|0〉+ e2πi0.jn |1〉

)
. . .
(
|0〉+ e2πi0.j1...jn |1〉

)
, (4.4)

where j = j12
n−1+j22

n−2+. . .+jn20 and 0.jl . . . jm = jl/2+. . .+jm/2
m−l+1.

The decomposition in turn motivates the canonical decomposition of the

QFT into quantum gates, which is shown in figure 2.11.

It is not possible to simulate gates at arbitrary distance with a matrix

product operator, and so to simulate the QFT we require a quantum circuit

in which only qubits which are nearest neighbours interact. We follow the

treatment in [91] to create such a circuit. The LNN circuit is shown in figure

2.12.

The operator-Schmidt decomposition of the QFT has been calculated

exactly [133] and the maximal Schmidt number of a n qubit transform is 2n.

Additionally, all of the singular values are equal. Simulating the QFT using

a MPO representation of (4.4) would thus entail an exponential scaling in

terms of execution recourses as the number of qubits is increased.

From (4.4) we note that the output at the first qubit depends only upon

the input value at the last qubit, the input at the second depends upon the

output at the last two qubits and so on. As such, the operator displays

similar classical correlations between the input and output values to those

in our earlier swap gate example. These correlations are expensive to encode
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in a MPO. A simple re-ordering of the input or output qubit values (but not

both) from equation (4.4) produces a more easily encoded operator:

|j1, . . . , jn〉 →
1

2n/2
(
|0〉+ e2πi0.j1 |1〉

)
. . .
(
|0〉+ e2πi0.jn...j1 |1〉

)
. (4.5)

In (4.5) the output at the first qubit depends only upon the input at the first

qubit, the output at the second qubit upon the input at the first two qubits

and so on. This ordering thus requires less information to be communicated

across bonds and can be encoded in a smaller MPO.

To construct a MPO encoding (4.5) one can construct a MPO of (4.4)

and then apply the SWAP gates leading to the required ordering to only one

side of the MPO. This has the disadvantage that the MPO for (4.4) must

be calculated first, which is computationally intractable for large numbers

of qubits. A better approach is to apply a swap gate to the input qubits

whenever one is applied to the output qubits. This makes the ordering of

the input qubits the same at all times as that of the output qubits. This

approach also produces the required ordering and invites an interpretation

that the resulting MPO contains only interesting correlations rather than

expensive swap correlations.

4.3 Representation size scaling

We constructed MPOs encoding equation (4.5) with a simple nearest neigh-

bour circuit [91]. The bond ranks of the MPO encoding (4.5) were much

lower than those required to encode (4.4). Figure 4.1 shows the size of

each element in a bond in the center of a MPO representing (4.5) for 24

qubits. We display the probability distribution derived from the singular

values pi = s2i /D where si are singular values and D is the dimension of the

Hilbert space (224 in this case).

The sizes of the bond elements displays a characteristic drop-off from

lower to higher rank. This characteristic was present regardless of the size

of the MPO (MPOs with up to 50 qubits were tested). Initally the rate

of decrease is slow, but it quickly becomes exponential with the bond rank

included. The exponential decrease of bond element size halted at a proba-

bility of around 10−40 at quadruple precision (128 bits), which corresponds
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Figure 4.1: The probability distribution derived from the singular values of
a bipartition at the center of MPOs representing the QFT with 24 qubits at
two different precisions.

to a singular value of size relative to the largest value of 10−20. There were

many additional bond elements of this size or slightly smaller displaying a

large amount of random variation in each MPO. While their size is much

larger than machine precision (these results were produced for quadruple

precision numbers with ε ≈ 10−35), the condition number of a singular value

decomposition in this problem is very large and so instability at small ele-

ment sizes is likely to result. Additionally, computing the operator with a

lower numerical precision (double precision with 64 bits for example) leads

to a curve with the same exponential dropoff initially, but with the dropoff

halting at a larger size. It is thus likely that these elements are a result only

of numerical imprecision.

The exponential dropoff of probability distribution values shown in figure

4.1 has the implication that the Schmidt strength of the rearranged QFT

converges to a constant value as the number of qubits in the transform is

increased. We compute this strength to be 0.8208. In this measure, the

QFT is thus less entangling than a single CNOT or SWAP gate.

The convergence of the bond sizes is shown in figure 4.2 where we plot

the mean difference between the size values obtained with a given number of

qubits and those of the largest MPO created (44 qubits). It is clear that the

values are converging towards the characteristic visible in figure 4.1a. Note

that for reasons of speed these results were computed at double precision

and so the halting of the convergence at 34 qubits represents the calculation

reaching machine precision.
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Figure 4.2: The mean difference between the probability distribution of the
middle bond of the QFT computed with each number of qubits and that
computed with the largest number of qubits (44).

After truncation of the smaller bond elements in the MPOs encoding

(4.5), the tensors in the middle of the transform converged to a constant

tensor as the number of qubits was increased. This convergence completely

specifies tensors in the middle of the transform up to phase rotations which

result from the lack of uniqueness of the SVD, which can be easily corrected.

The convergence is illustrated in figure 4.3, which shows the mean difference

between the absolute values of the elements of the middle tensor of each

MPO and the absolute values of the elements of middle tensor of the largest

MPO computed (44 qubits). Again, these results were computed at double

precision.
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Figure 4.3: The mean difference between the size of the values in a tensor
in the middle of a MPO and those of a tensor in the middle of a MPO of
the largest size (44 qubits). These differences are normalised by the size of
the maximum value in the tensor. Two different decay rates are shown.

Two different exponential decay rates are visible in the plot. The first
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of these rates is the region at which we must truncate the middle tensor of

the largest MPO to compare it to smaller tensors in smaller MPOs while

from 20 qubits onwards, the truncation ocurred at a bond size of 30 during

calculation of the MPO and so the tensors are the same size.

It is clear from our results that the sizes of each bond in a MPO of the

QFT decrease exponentially with increasing bond size. Truncating a bond

to size t would thus create an error of O(e−t), and O(n) truncations in a n

qubit transform would create errors of size O(ne−t). To maintain a constant

error as the number of qubits is increased, the bond size required would thus

be O(log(n)). The convergence towards a common tensor in the middle of

the transform implies that it would be possible to find a standard MPO

form for the QFT with a relatively small number of qubits determined by a

given error tolerance. The middle tensor of this standard QFT could then

be replicated a number of times to apply the transformation to any required

larger number of qubits.

As noted in section 3.3.1, applying a MPO with a maximal bond size of

χo and n qubits to a MPS with a maximal bond size of χs and n qubits takes

time O(nχ2
oχ

2
s). Applying a n qubit QFT to a MPS with maximum Schmidt

rank χ, this simulation technique would thus allow simulation of the QFT

in O(n (log(n))2 χ2) time (not including the time required to perform new

SVDs which would potentially reduce the bond rank).

4.4 Truncation Errors

Truncation of bonds of even small size will neccesarily introduce error into

the representation of an operator. In order to confirm that an efficient MPO

simulation of the QFT can be run with the bond size scalings suggested by

figure 4.1 without compromising accuracy, it is necessary to quantify this

error. It is difficult to quantify the error in a large MPO because the com-

putational cost of calculating any interesting metric will in general grow

exponentially with the number of qubits. This is true of any calculation

which does not take advantage of the structure of the MPO. For example,

many matrix norms require the calculation of the eigenvalues or decomposi-

tions of the full matrix of an operator, or maximisation of a function defined

on the full matrix. The matrix representation of the QFT is not sparse, and

so the exact calculation of such quantities is intractable.
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Figure 4.4: The error in the trace inner product between two MPOs of the
QFT, one with truncation and one without any truncation.

Instead, we have calculated two less rigorous but more easily computed

norms. In order to perform the calculations at large system sizes, these

calculations had to be performed with double precision.

Firstly, we computed the Hilbert-Schmidt inner product 1
D tr(UV ∗)

where U is a MPO representing the QFT and whose bonds are truncated to

a given size, V is the same operator but is not truncated and D is the dimen-

sion of the Hilbert space. The value obtained measures the inner product

between U |ψ〉 and V |ψ〉 averaged over all states |ψ〉. The error in the result

1 − 1
D tr(UV ∗) is shown in figure 4.4. It can be seen from this calculation

that the error drops off exponentially as the bond rank is increased, and

increases sub-exponentially as the number of qubits is increased. However,

this regime only extends as far as a maximum bond rank of 8, after which

the observed error was zero. At these ranks, the average error is thus below

the machine precision of around 10−16. It is worth noting that this is only

an average measure of error and so does not reflect the worse case error

involved in applying a truncated MPO.

The second measurement of error we computed is the amount of error

associated with Fourier transforming a periodic state. A periodic state with

L qubits and period r takes the form
∑2L/r−1

n=0 |k0 + nr〉. These states are
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produced by the modular exponentiation stage of Shor’s algorithm. Apply-

ing the QFT to a periodic state produces a state which is strongly peaked

around the values
∣∣i/r 2L

〉
for i < r and so measuring the Fourier Transform

of a periodic state reveals the period. This is the basis of Shor’s algorithm.
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Figure 4.5: The difference between the probability of measuring a peak
after simulating a QFT with a MPO on a periodic state and the analytic
probability. Shown for a period of 9.

We prepared periodic states with a range of periods and numbers of

qubits between 10 and 28 and computed the deviation of the sizes of the

peaks from the analytic values. These results are shown in figure 4.5 for

9 qubits. The results were similar for other periods for other values tested

(2 ≤ r ≤ 15). As with the trace inner product, the error seems to decrease

exponentially as the bond rank is increased at low bond ranks. At higher

bond ranks, the error appears to increase quickly as the number of qubits is

increased. It is difficult to obtain data with larger numbers of qubits due to

the exponential scaling of the calculation of the analytic size of the peaks.

The results in figure 4.1 indicate that many extra bond elements appear

at double precision with sizes relative to the largest element of 10−13 or less.

We would expect that errors observed after simulating the QFT of periodic

inputs would be at less than or equal to these levels. This is the case for the

range of qubits tested.
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4.5 Fragility of the scaling

It is difficult to apply precise phase shifts in a physical quantum computer.

As such, we consider the effect of small errors in the controlled phase gates.

Doing so also also allows us to determine how robust the scaling of the size

of the MPO with increasing numbers of qubits is to a particular kind of

noise in the quantum circuit. We prepared MPOs of the QFT, but when

applying a controlled phase of θ between qubits a and b, we instead applied

a controlled phase of θ+δr, where δ is the size of the random error and r is a

uniformly distributed random number between 0 and 1. While operational

noise in a physical quantum computer is generally modelled by a normally

distributed random phase, our choice of a uniform distribution allows us to

relate these results with those reported in section 4.3.

We compared the MPOs with errors to those without by fixing the num-

ber of qubits and subtracting the singular value vector in the middle bond

with errors from the singular value vector of the MPO without errors. Each

bond vector with errors deviated from the error-free vector by a roughly

constant amount along the length of the vector. As the singular values of

the QFT exponentially decay, this leads to characterstics similar to those

shown in figure 4.1. We show a set of probability distributions derived from

four MPOs with different δ values in figure 4.6.
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Figure 4.6: The probability distribution derived from the singular values of
the middle bonds of MPOs representing the QFT with 15 qubits computed
with random phases errors of size δ. These MPOs were produced at double
precision.

It is no coincidence that the curves in figures 4.1 and 4.6 look similar.

Because controlled phase rotations constitute most of the gates in the QFT
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(not including swap, which is a permutation of a two qubit tensor), intro-

ducing a small random error of order δ to the angle of the phase rotation

has a similar effect to limiting the precision of the calculation of the MPO

to δ. As such, by varying the value of δ we are doing a similar operation to

computing the MPO of the QFT at arbitrary precision.

We show the mean error in the middle bond vector that resulted from

varying δ in figure 4.7. These errors were computed by forming 100 MPOs

for each value of δ and averaging over the deviations from the error free

MPO. Also shown is a linear fit between the logarithm of the error and the

logarithm of δ. As this is a log-log plot with a clear linear relationship, the

error varies polynomially with δ and the gradient of the fit gives the power

of this dependance. In this case the power was found to be 1.031 ± 0.005,

an almost linear relationship between the random errors introduced in the

controlled phases and the resulting errors in the singular values.
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Figure 4.7: The mean differences between the singular value vectors of the
middle bonds of the QFT with 15 qubits and random phase errors of size δ,
and of the QFT with no phase errors. These values are normalised by the
largest singular value in the bond.

The middle bond vectors found in each of the random MPOs generated

for each value of δ displayed a similar dependence on element number to

those displayed in figure 4.6. Each small additional singular value in the

vectors generated with errors will create a random error in the final coeffi-

cients of the QFT operator. As the deviations from the more accurate set

of singular values result from a random phase, we do not expect that the

random errors created by each singular value will add to produce a much

larger error. As such, despite there being a large number of additional sin-

gular values created by the noise in each case, we expect that if the size of
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the mean error in the singular value vector is ε, the error in the coefficients

will be O(ε). As such, a phase imprecision of δ will bring about an overall

error in coefficients of the resulting QFT operator of roughly the same size.

Conversely, if the coefficients of the QFT are required to a precision of ε, the

MPO only needs to be computed with numbers of approximately the same

precision.

4.6 Reasons for the efficient representation

The fact that ordering the input values of the qubits differently to the out-

put values can lead to a dramatic reduction in MPO complexity raises the

question of whether a different ordering to that considered in (4.5) may be

optimal. We tested this by constructing MPOs with all possible input qubit

orderings for QFTs with up to twelve qubits. In every case the ordering in

(4.5) was optimal. For the reasons described above (the output at the nth

qubit depends only upon the input at the first n qubits), we expect this to

be the case for larger numbers of qubits as well.

It would seem natural to explain the exponential decrease of bond el-

ement size shown in figure 4.1 with the small effect of the rotation gates

correlating far away qubits. That is, the full QFT introduces correlations

across every qubit pairing. However, these correlations take the form of

controlled phase rotations and the size of the rotations decreases inverse-

exponentially with the one-dimensional distance between qubits. As such,

we should be able to neglect long range correlations. We would expect this

to cause the sizes of the tensors at the qubits within the MPO to be al-

most entirely unaffected by the number of far-away qubits. This is the idea

behind the AQFT [100], where the number of controlled phase gates con-

ditioned upon each qubit, henceforth the bandwidth, is set at a fixed value

irrespective of the number of qubits in the transform.

However, we constructed MPOs using a nearest neighbour quantum cir-

cuit of the AQFT and found that the bond ranks produced were larger than

those produced for the full transform. The maximum bond ranks for a series

of AQFTs after truncation are shown in figure 4.8. Maximum bond ranks in

an AQFT increased by a factor of 2 per additional controlled phase rotation

included. This increase levelled off in the middle of the transform but still

quickly became computationally intractable. Furthermore, the trace inner
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Figure 4.8: The maximum bond rank in MPOs corresponding to AQFTs
with different numbers of qubits. Each AQFT was constructed with a dif-
ferent maximum number of controlled phase gates conditioned on each qubit.

product between an operator truncated at any bond rank and a series of

operators with reduced bandwidths was a maximum for the full transform

and decreased monotonically as the bandwidth decreased. It thus seems

that the low required bond ranks observed in (4.5) are a feature of the full

QFT.

While the low required bond rank of the QFT cannot be attributed

entirely to decreasing phase rotations, the size of these rotations and the rate

of their decrease are important. We found that transforms with the same

structure as the QFT but with phase rotations decreasing as exp (2πi/kn)

instead of exp
(
2πi/2k

)
, where k is the qubit distance and n an integer, did

not display the characteristic dropoff of bond size. Rather, the required bond

ranks appeared to increase with increasing numbers of qubits, presumably

until the phase rotations become smaller than machine precision. Rotations

of the form exp
(
2πi/nk

)
for n ≥ 2 still lead to Fourier transforms, although

not over Z2m , and were found to still lead to an exponential dropoff in bond

element size. The rate of this dropoff increased as n increased.

As such, while the small bond rank required to accurately represent the

QFT with a MPO is not due solely to the decreasing size of the phase

rotations used, it is related to them. It is likely the exponential dropoff

of bond size is the result of a symmetry in the structure of the QFT. In

order to obtain a low bond rank it is necessary to have phase rotations

which decrease at least exponentially with the distance between qubits and

to have the same phase rotation for each conditioned gate at a given linear

qubit distance.
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4.7 Implications and complexity

While we have not proven that the QFT can be efficiently represented as a

MPO, our numerical results are strongly suggestive of this. It appears that

the numerical error associated with the very small amount of truncation

required for a tractable representation is very close to zero over a range of

numbers of qubits. Additionally, the differences between a matrix in the

middle of each operator and an adjacent matrix decreases as the system size

increases.

Together, these results suggest that a MPO representing a QFT for an

arbitrary number of qubits can be created from the MPO representation

of a QFT of a smaller size. With an appropriate bond rank, this would

allow the QFT to be performed on a MPO with maximum Schmidt rank χ

with computational cost O(n (log(n))2 χ2), as noted in section 4.3. It could

similarly be performed on weakly correlated mixed states. Our method

allows the QFT to be efficiently simulated in a straightforward fashion in

any case in which the qubits are ordered linearly.

Application of the QFT to a MPS of n qubits with this method increases

the bond rank by at most a factor scaling as O(log(n)). Denoting this factor

by d, the application of m QFTs increases the bond ranks by a maximum

factor of dm. As such, the application of a constant number of QFTs can

be efficiently simulated with a large number of qubits. These QFTs can be

interspersed by quantum circuits that do not increase the Schmidt rank.

Our results strengthen earlier work. In [127] the AQFT is show to be

classically simulatable in polynomial time, although an explicit scaling is

not derived. Our method of simulation uses the full QFT and has a more

advantageous scaling with respect to the number of qubits of O(n (log(n))2).

In [127] a condition is also derived for when two efficiently simulatable

quantum circuits composed may be efficiently simulated. From this condi-

tion it follows that any circuit composed of a constant number of AQFTs

and log-depth limited interaction range circuits can be efficiently classically

simulated. We provide a different perspective on the composability criteria.

That is, our method makes explicit the scaling of the cost of the QFT with

the Schmidt rank of the bipartitions in the input state. We have shown the

difficulty of simulating the QFT to be mostly determined by the complexity

of the state being transformed. A log-depth limited interaction circuit will
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produce an input state with small Schmidt ranks across each bond partition,

and so the previous result follows from our results.

That the QFT can be represented to very high fidelity with a MPO with

limited bond ranks implies that the QFT can produce only a limited amount

of entanglement. This conclusion was originally shown in [42], however our

methods are more straightforward.

We take a different approach to simulating the QFT to that presented

in [71, 72], which uses an algebraic extension of stabilizer techniques to

efficiently simulate a range of circuits including a polynomial number of

QFTs. These results also allow the QFT to be simulated on highly en-

tangled states and on different abelian groups. Our results take a tensor

network approach and only allow a constant number of QFTs to be simu-

lated efficiently on states with entanglement that grows polynomially with

the number of qubits. Additionally, our results allow a classification of the

difficulty of simulating the QFT on arbitrary input states to be calculated.

With respect to the question of where the quantum speedup in Shor’s

algorithm originates, our results provide further evidence that it originates

in the highly entangled state generated by modular exponentiation. As will

be discussed in the next section, periodic states are generated by modular

exponentiation, and a state of period r will have bond ranks in a MPS of

r. As the maximum period of a modular exponentiation process factoring a

number N scales as O(N) [130], states with very high Schmidt numbers are

generated. These states are very difficult to represent in a MPS and thus

are very difficult to Fourier transform. This conclusion is similar to that

reached in other works such as [127, 132]. It is additionally worth noting

that while our method makes very clear the connection between the Schmidt

rank of the input state and the difficulty in Fourier transforming it, the same

conclusion can be drawn about the computational speedup from the results

of [127].



Chapter 5

Simulation of Shor’s

algorithm

In this chapter we will simulate Shor’s algorithm in the presence of Z errors

using MPS representations. In doing this, we will build upon a previous

work in which the MPS simulation of Shor’s algorithm was introduced. We

will increase the speed of our simulation by commuting Z errors to a limited

number of points in the algorithm and by using the results of chapter 4.

In section 5.1 we will describe previous work in which Shor’s algorithm

has been simulated and the effects of errors observed. We detail our simula-

tion approach in section 5.2 for pure state simulations of Shor’s algorithm,

and in section 5.3 for simulations in the presence of noise. In section 5.4 we

perform noisy simulations of Shor’s algorithm and present the results with

respect to the success of the algorithm and in section 5.5 we quantify the

entanglement present in our MPS simulations.

5.1 Previous Results

Shor’s algorithm is the prototypical example of a non-trivial quantum al-

gorithm which offers an exponential time saving over the fastest known

classical alternative. As such, the algorithm has been studied in many dif-

ferent ways. We are principally concerned with the simulation of Shor’s

algorithm and with the conclusions which can be drawn from these simu-

lations. Shor’s algorithm has been targeted by increasingly large parallel

simulations [134, 135, 136, 137, 138, 139]. Of these, the most advanced is

72
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given by [138, 139] in which a 128 core cluster computer is used to simulate

Shor’s algorithm for N up to 1034273 (this simulation uses 40 qubits) by

performing modular exponentiation classically. The authors also simulate

all of Shor’s algorithm expanded with the Beauregard circuit for N up to

57. A larger simulation is reported in [136], in which up to 4096 processes

and 1TB of memory is used to simulate quantum computers containing up

to 36 qubits. Another promising approach to simulating Shor’s algorithm is

presented by Wang, Hill and Hollenberg [140] (henceforth WHH), who uses

MPSs to simulate Shor’s algorithm for up to 36 qubits in a single process

with 2GB of memory. In this chapter we will follow the approach of WHH,

extend their method to include the simulation of a particular error model,

and report some preliminary results.

5.1.1 MPS simulation

While most simulation of Shor’s algorithm takes place with a state vector ap-

proach, a MPS simulation is detailed in the work of WHH. This simulation is

found to be much easier to perform than a state vector simulation. However,

it is only possible to simulate pure state evolution using this approach. In

this chapter we will present a generalisation of the MPS simulation method

to allow simulation of dephasing noise, and present further results indicating

the difficulty of incorporating other kinds of noise. To provide a base for

our work, we will summarise the method and results of WHH here.

In WHH, a MPS simulation is conducted of Shor’s algorithm in circuit

form. The state is first prepared with 2l qubits in the upper register and a

qudit in the lower register of dimension 2l. The lower qudit is kept in sparse

form, so that only populated computational basis states are recorded. As

modular exponentiation results in the population of r lower register states,

where r is the period of the process, this results in the lower qudit only ever

reaching a dimension of r.

Modular exponentiation is applied by contracting the rightmost qubit

in the upper register with the lower register qudit, applying the modular

exponentiation matrix and then performing a trivial decomposition between

the qubit and qudit:

Am×n =

{
Am×nIn×n, m ≥ n
Im×mAm×n, m < n

(5.1)
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The control qudit that was used is then moved to the left hand size of the

MPS by a series of SWAP gates and QR decompositions. If k states are

populated in the lower register after a modular exponentiation step, this

results in the MPS having bond dimension k between the upper and lower

register, and on every bond between the lower register and the final position

of the control qubit after it has be swapped to its final location. By changing

the order in which modular exponentiation steps are performed, time savings

are made by minimizing the value of k for as long as possible, although it

must grow to r by the end of the modular exponentiation (this is found to

be the minimal bank rank possible at this point in the algorithm). After

modular exponentiation, the lower register is measured and the sizes of the

bonds in the upper register minimised by a series of QR decompositions.

The QFT is applied by using the nearest neighbour QFT circuit (shown

in figure 2.12) and applying it to the state which results from modular

exponentiation. The author assumes that the MPS after the QFT will be

maximally entangled, and so uses trivial decompositions (5.1) after each

combined controlled phase and swap gate step (our results in chapter 4

indicate that this is not correct). The MPS is finally contracted fully to

write the state as a single amplitude vector so that the amplitude of the

computational basis state can be assessed. Simulation of Shor’s algorithm

with a MPS is concluded to requireO(2lr) space before the Fourier transform

and O(2l · 2r2, 22l) space in total, a saving on the O(23l) required for a state

vector simulation. A time scaling is not derived.

5.1.2 Entanglement

There have been many papers discussing the contentious issue of whether

there is a connection, and what form it takes, between entanglement and

the computational speedup of quantum algorithms over classical algorithms.

However, there have been relatively few papers explicitly quantifying the

amount of entanglement in Shor’s algorithm. Firstly, Parker and Plenio

[141] show that a version of Shor’s algorithm with a single pure qubit and

the others in a mixed state is viable. This simulate this version of the

algorithm and show that the entanglement is still non-zero.

Kendon and Munro [142] simulate instances of Shor’s algorithm with

values of N between 15 and 119. For N = 15 and N = 21 they sample

bipartitions to determine the negativity of each bipartition in the upper and



5.1. Previous Results 75

lower registers with given numbers of qubits in the two halves. They also

calculate the entanglement of formation for each pair of qubits. For larger

N values they calculate the negativity of bipartitions of 1 qubit against the

others in the upper register before and after the QFT, and quantify the

decrease in the entanglement.

Shimoni et al [143] and Most et al [144] consider the groverian measure

of entanglement applied to Shor’s algorithm. This entanglement measure

expresses the distance between a state and the nearest product state. They

perform simulations of Shor’s algorithm with N between 3 and 200 and

determine that the entanglement is always less than
√

1− 1/(2N) and that

the entanglement remains close to constant during the QFT stage of the

algorithm. The latter paper develops theoretical approximations for the

entanglement of periodic states and explains why the QFT does not increase

the entanglement.

5.1.3 Shor’s algorithm in the presence of noise

One of the applications of simulating Shor’s algorithm is to study the affect

of noise or imperfections on the operation of the algorithm. Research in

this area has occurred for some time, and most authors use a state vector

approach to simulate the algorithm in the presence of their chosen error

model. The earliest of these works are [145], which simulates dissipative

noise for up to 15 qubits; and [146], in which phase drift errors are simulated

in a ion trap quantum computer. A form of Shor’s algorithm with with one

pure control qubit and a series of mixed qubits is considered and simulated

in [147], in which the amount of entanglement is quantified with increased

mixing. The work of Wei [148] simulates dynamical evolution during a time

delay between gates for N = 4, 15, 21 and 31. Devitt et al [149] examine

depolarizing noise in Shor’s algorithm for between 14 and 20 qubits and

determine the maximum permissible number of errors numerically. Garcia-

Mata et al [150, 151] consider static imperfections and couplings between

qubits and find that the algorithm is viable up to a strength of coupling ε

which decreases polynomially with the number of qubits. The latter of these

two simulations uses only a single control qubit and so is able to perform

simulations with up to N = 205193 (a simulation involving 19 qubits).

Another class of work related to the affect of noise and imprecision in Shor’s

algorithm are those which consider the affect of using the AQFT instead of
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the full QFT [129, 152, 130]. This issue is often approached from the point

of view of reducing the number of gates in a quantum computer [138], but

can also be phrased with relation to imperfect gate operation.

5.2 Optimised MPS simulation

We perform error-free MPS simulation with a similar method to that of

WHH. The upper register is divided into 2l tensors, one for each qubit.

The lower register is considered as a single 2l dimensional qudit, however

the amount of information stored is minimised by only tracking the non-

zero coefficients in this register. The lower register is always kept at the

rightmost side of the MPS as it has the highest quantum dimension, and so

we can limit the size of the overall MPS by only allowing the bottom register

to have one bond. We split Shor’s algorithm into two stages, the modular

exponentiation and the QFT.

5.2.1 Modular exponentiation

We consider modular exponentiation as a series of gates between the right-

most qubit in the upper register and the lower register. The state of the

system after the modular exponentiation step is:

|ψ〉 =
1

2l

22l∑
j=0

|j〉
∣∣xj modN

〉
. (5.2)

There are r distinct values of xj modN and so if we denote f(j) = xj modN

and the r distinct values of f(j) by f1 . . . fj , we can rewrite (5.2) as

|ψ〉 =
1

2l

r∑
i=1

 ∑
j:f(j)=fi

|j〉

⊗ |fi〉. (5.3)

Each j maps to only one value f(j) and so each of the states in the left and

right parts of (5.3) are orthogonal, and it is clear that the Schmidt rank of

|ψ〉 across this bipartition is r. As r is the number of non-zero states in

the lower register, we can obtain a MPS with minimum bond dimensions

across the bond between the upper and lower registers by performing the

trivial decomposition (5.1). Our simulations indicate that the Schmidt rank
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of the upper:lower register bipartition of the system is also the number of

states with non-zero coefficients in the lower register at other times during

the algorithm, and so a trivial decomposition will be appropriate at all times

when performing modular exponentiation gates between the upper and lower

registers.

Starting from the least significant bit (we do not apply WHH’s reordering

of the modular exponentiation gates), we apply modular exponentiation

gates between the registers. After each modular exponentiation step, we

move the control qubit used to its final position, the space directly below the

previous control qubit used. It is possible to perform this action with a series

of SWAP gates and SVD decompositions, however this is computationally

inefficient. After k modular exponentiation gates have been applied, the k

leftmost qubits of the upper register will have been used as control qubits

and so will be entangled with the lower register. The remaining 2l − k

qubits between the bottom of the upper register and the previous control

qubit will not have interacted with the system and will be in the state

1/2 (|0〉+ |1〉). The Schmidt rank between the k qubits that have interacted

and the lower register will be equal to the number of non-zero values in the

lower register rk and so this will be the size of each bond between the k

top qubits in the upper register and the lower register. These bonds join

qubits that have not interacted, so we set the tensor of each of the qubits

{k . . . 2l} to be Γ
[a]αa1αa
ia

= 1/
√

2 δαa−1αa . We can write the vector on each

bond as λ[a] = (1, . . . , 1). Using this qubit reordering technique, our overall

procedure to perform the kth modular exponentiation gate can enumerated:

1. Contract the control qubit, the bottom qubit of the upper register,

with the sparse qudit of the lower register. As the control qubit has

not yet interacted with any other part of the system, it will be in the

state 1/2 (|0〉+ |1〉).

2. Apply the modular exponentiation gate. This step can be performed

either by forming a matrix for the gate and applying it by multi-

plication, or by moving regions of memory so that in the jth gate,

|0〉|i〉 → |0〉|i〉 and |1〉|i〉 → |1〉
∣∣∣i× a2j mod N

〉
. Moving memory

exploits our knowledge of the action of the modular exponentiation

operator and is faster than explicity forming a gate and multiplying it

by the combined two qubit tensor.
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3. Decompose the new combined two qubit tensor into two single qubit

tensors. As the qudit representing the bottom register is sparse, we

will have the values in which it has a non-zero coefficient ordered as

{ri}. We can then perform a trivial decomposition into the left tensor,

representing the control qubit; and the right tensor, representing the

bottom register. If we denote the combined two qubit tensor after gate

application as Γ
[lr]α
ilir

where α is the bond on the left of the two qubit

subsystem, and il and ir are the states of the left and right constituent

systems, we can write the decomposition as:

Γ
[l]αβ
il

= Γ
[lr]α
ilβ

, Γ
[r]β
ir

= δβir , λβ = 1. (5.4)

4. Move the control qubit to location k, the location immediately to the

right of the previous control qubit. Copy the new tensor Γ
[l]αβ
il

to the

kth tensor location in the MPS and move every qubit in the range

[k, 2l−1] (note that 2l was the position occupied by the control qubit)

to the right by one site. If the number of values in the lower register

rk, which is also the bond size of the new bond β, has changed from

the previous value rk−1, update every tensor while moving them one

site to the right. The elements of each new tensor will be Γ
[a]αa−1αa
ia

=

1/
√

2 δαa−1αa , where the bonds αa1 , αa will now have size rk.

We note that in our procedure it is not strictly necessary to have 2l

qubits in the upper register at all times. As each qubit is in the state H|0〉
until it is used as a control qubit and interacts with the bottom register, it

is only necessary to track qubits while they are interacting with the lower

register and after the interaction. It would be possible to prepare a state

of one qubit and the lower register and interact the two, and then to add a

qubit between them. This qubit would interact with the lower register and

another qubit would be added. This procedure would continue until there

had been 2l interactions.

We also note that we have applied modular exponentiation gates in large

single units. This is not possible on a physical quantum computer, where

modular exponentiation needs to be decomposed into fundamental gates to

be performed. There are several different ways to perform this decompo-

sition on each quantum architecture, for example linear nearest neighbour

quantum computers and a 2D array of qubits. Each decomposition requires



5.2. Optimised MPS simulation 79

a different numbers of gates and a different number of ancillary qubits.

We could perform simulations of linear nearest neighbour gate decom-

positions of modular exponentiation procedures with MPSs, but we have

chosen to perform a higher level simulation. A simulation of a particular de-

composition would be computationally much more difficult than a simulation

such as ours, limiting the problem size that could be studied. Additionally,

while not translating directly to gates that could be performed on a quan-

tum computer, a higher level simulation is interesting to assess the strengths

of simulation methods and to perform simulations of algorithms with very

low levels of noise. We will perform such a simulation in this chapter.

Time required

To analyse the time complexity of simulating modular exponentiation, we

will consider separately the time complexity of initial preparation of the

state, and each of the steps of performing a modular exponentiation gate.

Preparing the state initially requires each of the 2l qubits and the qudit to

be prepared in a product state and so will take time O(l). To perform the

kth modular exponentiation step, we have to first contract the control qubit

with the lower register. With dense tensors this would take O(r3k1) time,

but as the control qubit is in a product state and the lower register tensor is

sparse, this contraction will only take O(r2k1) time, and will yield a combined

tensor of O(r2k1) size. We can accomplish the modular exponentiation itself

by moving areas of memory around, and so this will take O(r2k1) time, the

same scaling as the size of the matrix. The final decomposition requires a

relabelling of the new tensor and the creation of a new identity tensor for the

lower register, which will take time O(rk−1rk) and O(r2k) respectively. We

may then have to revisit and reform each of the unused tensors, which will

take O(nr2k) time, however we will not include this in our overall scaling as

this step does not have to be performed many times and so the computation

time may be amortised over the simulation.

Each of the steps involved in modular exponentiation thus involves a

time scaling of O(r2a) for some a with ra ≤ r. As the value rk will quickly

approach the maximum r and there are 2l modular exponentiation gates

in total, the preparation of the state and the simulation of the modular

exponentiation will take a total time of O(lr2). The MPS produced at the

end of the modular exponentiation will have a space complexity of O(lr2).
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5.2.2 QFT

After the simulation of the modular exponentiation, we must perform a

QFT. Shor’s algorithm allows the state of the lower register to be measured

after the modular exponentiation but this is not necessary for the success of

the algorithm. We measure the state of the lower register by selecting a value

out of the r non-zero values we keep track of. In a pure state simulation

of Shor’s algorithm, each of the lower register values is equally likely, so we

are free to select one at random. Because the bond between the upper and

lower registers is formed with a trivial decomposition, measuring the mth

value on the lower register will cause the last tensor to be removed, and the

mth value of the last bond to be selected (all other values in this bond are

set to zero). A series of SVDs moving from right to left and then left to

right will return the MPS to canonical form. The bond sizes in the canonical

MPS must be smaller than in the MPS before measurement because each

quantum system only has a dimension of 2, while all of the bonds including

those on the rightmost part of the upper register were of size r before the

measurement. As such, measuring the lower register reduces the size of the

MPS representation of the system.

Instead of performing the QFT on our system by applying quantum gates

to the MPS, we use the MPO form of the QFT. In chapter 4 we found that

the QFT can be simulated on a state of n qubits with Schmidt rank χ in

O(nχ2(log(n))2) time. Here we have a state with a Schmidt rank less than

or equal to the period of the modular exponentiation r, and so the QFT

can be simulated in O(nr2(log(n))2) time by applying the MPO directly to

the MPS. The MPO for the QFT can be calculated ahead of time and then

applied in a large number of different states, so we do not include the cost

of calculating it in the time required to perform our simulation.

After applying the QFT, we are free to perform further computation or

quantum gates to the state, or to perform contractions to determine any

desired coefficients. We found in chapter 4 that if only a single coefficient is

required, the MPO of the QFT takes the form of a bond size one projector

projeting to a particular quantum state. We can calculate the inner product

between this quantum state and our MPS by contraction to determine the

coefficient of the desired index after the QFT.
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Time required

As indicated above, to apply the QFT MPO to the MPS resulting from

the modular exponentiation will take O(nr2 (logn)2) time, after which ad-

ditional computation can be performed or a series of contractions performed.

If a limited number m of coefficients is required (for example to determine

the probability of obtaining useful output for Shor’s algorithm but not what

the other coefficients are), we can form a series of bond size one MPSs and

take an inner product with the state after modular exponentiation for each

coefficient. As these projectors can be prepared earlier and used an unlim-

ited number of times, the cost of their preparation can be amortized across

a large number of Shor’s algorithm simulations. The process of obtaining

a coefficient after modular exponentiation thus takes the same amount of

time as a contraction of a single coefficient from the MPS. This takes time

O(lr3), and so obtaining m coefficients will take time O(mlr3)

5.3 MPS Simulation with errors

Shor’s algorithm is relatively easy to simulate with a MPS primarily be-

cause we are free to select the parameters of the algorithm (the value of

N to be factored and the additional number a) to ensure that the order of

the modular exponentiation r is small. In doing so we ensure that limited

entanglement develops. The presence of general noise modelled by density

matrix evolution or averaging over many pure state simulations of the noisy

algorithm will decrease the amount of entanglement. However, any individ-

ual pure state simulation of Shor’s algorithm with a stochastic noise model

will have a dramatically increased Schmidt rank to the noiseless case. This

problem is worse the larger that r is, but is still present in cases with small

r values. This would seem to present a paradox in which adding noise to

Shor’s algorithm dramatically increases entanglement. This is not the case,

because each individual stochastic pure state simulation is physically mean-

ingless. It is only by averaging over a statistically large sample of random

noisy pure state simulations that a physically meaningful result can be cal-

culated.
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5.3.1 Z errors

We will first consider the effect of dephasing noise on the MPS simulation of

Shor’s algorithm. General dephasing noise can be introduced by assigning

a probability pz that a Z gate can occur after any quantum gate, or on any

qubit every time-step during general evolution. To model this, we thus must

allow a Z gate to be placed between any two quantum gates in our circuit.

Shor’s algorithm is composed of the modular step and the QFT. Modu-

lar exponentiation in turn consists of Hadamard gates, controlled modular

exponentiation gates and SWAP gates. A Z gate will commute through

modular exponentiation gates, and so we are free to change the order of

these two gates in a quantum circuit. A SWAP gate will change the qubit

that the Z gate is applied on, but not any other part of its effect. As such,

we can change the order of a Z gate and a SWAP gate as long as we change

which qubit the Z gate is applied on. A Z gate does not commute with a

Hadamard gate, and so we may not change the order of these two gates in

a quantum circuit. Given a circuit composed entirely of SWAP gates and

modular exponentiation, we can thus commute a Z gate from wherever it

is placed in the circuit to the outside of the circuit (the start or finish de-

pending upon which we prefer) as long as we keep track of which qubit we

are applying the phase to when we encounter swap gates. If we consider the

input to Shor’s algorithm to be the state H⊗n|0〉 ⊗ |1〉, then we can move

any Z gates that occur to the end of the modular exponentiation step

As such, to simulate modular exponentiation in the presence of only de-

phasing noise, we can create the MPS and perform modular exponentiation

once, and then copy the MPS multiple times and apply the errors to the

different copies. The error probabilities can be straightforwardly calculated

based on the per time step or per gate error probabilities, the number of

gates that has acted on each qubit, and the number of time steps that have

elapsed.

The QFT is composed of Hadamard gates, controlled phase gates and

SWAP gates. Z gates commute with controlled phase gates, and as above

they can be commuted through a SWAP gate if we change which qubit

the Z gate is being applied to. However, they do not commute through

Hadamard gates, and so the order of a HZ or ZH series of gates cannot be

changed without introducing other gates. In the canonical decomposition

of the QFT, each qubit undergoes one Hadamard, after which a conditional
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Figure 5.1: (a) A nearest neighbour modular exponentiation circuit with a
single Z error, and a line showing the path the Z gate can take to move
around the circuit due to commutation relationships (the dotted red line).
Also shown are two equivalent circuits with the Z operator moved to the
beginning (b), or end (c), of the circuit.

phase is applied between it and each qubit lower in the one dimensional

ordering. Considered this way, we can consider Z errors that occur in two

groups: those that occur before the Hadamard on their qubit, and those

that occur afterwards. If a Z error occurs before the Hadamard, it can be

commuted backwards through all of the controlled phase interactions, and

so it is equivalent to a Z error occurring before the QFT has begun. Simi-

larly, if a Z error occurs after the Hadamard, it can be commuted forwards

through the controlled phase interactions, and so it is equivalent to a Z error

occurring after the QFT has finished.

Expressing the canonical decomposition of the QFT in a LNN architec-

ture changes the way that the circuit appears by introducing SWAP gates.

However, because a SWAP gate changes the qubit on which we consider Z
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Figure 5.2: The LNN QFT circuit for four qubits with two Z errors. (a)
Red and blue lines indicate the locations these errors can be commuted to
and in (b) the errors have been moved to the edges of the circuit.

errors to have occurred, the action of Z errors is essentially the same as on

the circuit in which arbitrary qubits interact. That is, we can still move all

of the Z errors to locations before or after QFT. We illustrate this in figure

5.2, which shows a linear nearest neighbour circuit for the four qubit QFT

with two Z errors. The dotted blue and red lines indicate locations to which

each error can be moved to give a circuit encoding the same operator. For

each error, moving the Z gate in one direction will eventually result in being

able to move no further due to the presence of a Hadamard gate, while the

other direction will reach the beginning or end of the circuit. By classifying

errors into occurring before or after the Hadamard gate on their qubit we

can thus commute them to the beginning or end of the QFT circuit.

Given that we can commute Z errors out of the QFT circuit, we can

follow a similar simulation strategy to simulate the overall noisy pure state

evolution to that employed with modular exponentiation. To elucidate our

technique, we consider simulation by the graph contraction paradigm [41].

We can consider the entire quantum circuit as a graph where input states,

output states and gates are nodes, and the edges connect interacting gates on

each qubit to form the quantum circuit. Each node is associated with a vec-

tor (input and output states) or a matrix (gates). In this structure, obtaining

a coefficient for a set of indices at the end of the simulation corresponds to

setting the output state vectors to be projectors and then contracting the
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graph by matrix and tensor multiplications.

A MPS simulation is a slight modification of this paradigm in which one

gate at a time in contracted into the input nodes, and then decompositions

are performed to preserve the graph structure of the input nodes. However,

the simulation will return the same result regardless of the order in which we

contract the nodes of the graph. As such, we are free to contract any nodes

together at any time in the simulation, as well as to perform decompositions

on any node which will split it into a series of smaller nodes. In saying

this, we are explicitly considering a quantum circuit as a tensor network. A

simulation may be optimised by contracting and decomposing nodes in the

most beneficial way.

If we need to perform several simulations on closely related circuits

(which we consider as tensor networks), we may contract those parts of

the circuit which are the same for all simulations, and then only perform

the contractions that are different for each separate simulation. In the case

of Z errors in the QFT, we thus contract the modular exponentiation into

the input state MPS, and the QFT into a MPO. For each particular set of

errors, we apply those after the modular exponentiation and before the QFT

to the modular exponentiation output MPS, and then apply the QFT MPO.

Further Z errors can be applied after this, and then further computations

to the output state. If we only require a small set of coefficients, we can

produce projector MPOs of these coefficients from the QFT MPO, and then

take an inner product with the modular exponentiation output MPS after

the Z errors. The final set of errors can be applied by multiplying by −1

any coefficient that has a 1 as its jth index if a Z error occurs on the jth

qubit after the QFT.

5.3.2 X errors

Similarly to dephasing noise, we can introduce a second kind of noise to

our MPS simulations by assigning a probability px that a X gate can occur

after any quantum gate, or on any qubit during every time-step of simula-

tion. However, we cannot apply the same techniques which made Z errors

tractable to simulate in large instances if we wish to simulate X errors.

While the Z gate commutes with the constituent gates of modular exponen-

tiation and most of those of the QFT, X does not commute with most gates

of either of these. More specifically, the X gate does not commute with
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the control of modular exponentiation gates or with the controlled phase

rotation gates and Hadamards used in the QFT. We would thus need to in-

corporate X errors in the middle of the simulation of the quantum circuits

performing modular exponentiation and the QFT.

The difficulty of simulating Shor’s algorithm in the presence of X errors

depends strongly on the qubit and time-step at which the error occurs. As

such, we will describe several different kinds of errors that have different

effects on the difficulty of performing the simulation.

We will first consider X errors occurring during the modular exponenti-

ation. Applying a X gate to any qubit in the top register at any time-step

during modular exponentiation will have no affect on the computation. This

is because at all times during the exponentiation, the top register is in the

state |+〉, which is stabilised by X. Applying a X gate to any qubit in the

bottom register will in general increase the number of populated elements

in the bottom qudit. As the Schmidt rank of the system is essentially the

number of non-zero elements in the bottom register, this will have the ef-

fect of increasing the Schmidt rank, and so the difficulty of performing the

simulation.

To see why an X error in the bottom register increases the number of

non-zero values in the bottom register, we consider the action of modular

exponentiation. If the period of the modular exponentiation process is r

then the bottom register will have non-zero coefficients for r different values.

In this context, each modular exponentiation gate is a cyclic permutation

between these r values. We make simulation of Shor’s algorithm tractable by

selecting values of a for each N which generate low periods. However, if a X

gate is applied to the bottom register during the modular exponentiation, it

will transform each element of the cycle {i1, . . . , ir} into a different number.

As we perform simulations with low values of r, these transformed bottom

register values will not in general be elements of the original cycle. Indeed,

for a bottom register with a large dimension, the transformed values may be

elements of different cycles. Later modular exponentiation gates populate

and cyclically permute each of these new cycles, and after few X the bottom

register can become fully populated. This causes the Schmidt rank of the

state of the bipartition between the upper and lower register to become

maximal, and so the simulation is no longer tractable for large N . From

performing simulations with X errors occurring in the bottom register, we
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find that each X error roughly doubles the number of populated values in

the bottom register, and so doubles the bond rank between the two registers.

As such, it is not tractable with a simple MPS method to simulate Shor’s

algorithm in the presence of X errors in the bottom register. It is possible

that with modifications such a simulation could be performed.

We now consider the affect of X errors on the simulation of the QFT.

It is not possible to commute X errors in the QFT backwards or forwards

through any gates beside SWAP gates. That is, the X gate has a non-zero

commutator with both the control and target part of a controlled phase

gate, as well as with Hadamard gates. To perform a simulation of the QFT

including X gates we thus have two possible approaches:

• To simulate the QFT gate by gate including the required X gate. To

perform this simulation more quickly for many qubits we may break

the QFT up into stages and calculate the MPO of each stage. The

MPOs may be applied to each noisy state interspersed with X errors.

In general the presence of errors will increase the bond dimension of

the state. However, we have not performed detailed simulations to

determine precisely how the dimension is changed.

• To calculate the MPO of the QFT including a X error. This MPO

may either be calculated by multiplying MPOs encoding smaller stages

of the MPO interspersed by X errors, or may performing a full gate

by gate multiplication on an identity MPO. Our results in chapter

4 indicate that the efficient MPO representation of the QFT can be

compromised by the presence of a small amount of noise. We would

thus expect that the MPO representation of the QFT with any X

errors would not be an efficient representation. As such, we would

expect this to be an inefficient simulation method.

We note that it would be highly unusual for X errors to be present during

the QFT but not during the modular exponentiation. We have shown above

that MPS simulations of modular exponentiation including X errors are

intractable for large N . As such, whether or not QFT simulations involving

X errors are tractable does not affect the overall tractability of a large

simulation of Shor’s algorithm involving X errors.
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5.4 Success probability with errors

We perform simulations of large instances or Shor’s algorithm in the presence

of Z errors. This error model can be physically motivated by noting that

the physical processes leading to Z generally occur on a timescale which is

much shorter than that leading to X errors. As such, Z errors are much

more likely to occur than X errors and the success of quantum computers

operating in this regime which are not fault tolerant depend upon the impact

of Z errors on the success of algorithms. The use of MPSs allows us to easily

simulate Shor’s algorithm in the presence of Z errors, due to the properties

described above.

We simulate Shor’s algorithm with a fixed probability of a Z error oc-

curring at each time-step. We perform these simulations with the method

specified in sections 5.2 and 5.3 above. By averaging over sufficiently many

stochastic runs of the simulation, we can average the elements of the pure

state density matrices for each run and obtain an estimate of the result of

the noisy evolution. In this case we are primarily interested in the probabil-

ity that Shor’s algorithm will succeed, and in doing so produce an output

which is useful for factorising a number N . The problem of which coeffi-

cients are relevant to this measurement of success is addressed in [129], which

summarises the procedure of converting a measured value into a value of r

and concludes that the useful measurement values are jc1 = bc22L/rc and

jc2 = dc22L/re for each integer c ≤ r. As such, after performing simulations

we only need to calculate the elements of the density matrix ρjc1jc1 and

ρjc2jc2 for each c. The sum of these elements tells us to the probability of

obtaining a useful output to the algorithm.

We performed simulations of Shor’s algorithm with Z errors with a va-

riety of N values between 4 and 60 and every possible r value for each N

value. To obtain each probability we averaged the probability of success

over the results of 750 independent stochastic simulations. This number of

stochastic simulations seemed to give appropriate results for the range of

(N, a) values tested. We also performed larger simulations of up to N = 183

(24 qubits) in which each probability was the average of results obtained

from 100 stochastic simulations. Erroneous results were obtained with this

number of runs in which an exponential decline of success probability would

be interspersed with probabilities of 0 (up to the limits of computational ac-
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curacy). As this occurred for (N, a) values which displayed no such artifacts

when averaged over 750 simulations, we conclude that 100 is an insufficient

number of stochastic simulations to average over to obtain a reasonable re-

sult in this range of (N, a) values.
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Figure 5.3: The probability of success of Shor’s algorithm for N = 45 and
a = 17, which gives r = 4, for various error probabilities per time step. Also
shown is the line of best fit to this data.

We display our results of the probability of success of Shor’s algorithm for

N = 45 and a = 17 (giving r = 4) at various probabilities of error per time-

step p between 0.001 and 0.02 in figure 5.3. It is clear that the probability

of success of the algorithm decreases exponentially with increasing error

probability. In figure 5.3 we also show the line of best fit the data. Writing

ps = ae−cpe where ps is the success probability and pe is the error probability

per time-step, this gives us a decay of the probability of success c = 121±3.

We obtain similar decay curves to figure 5.3 for each tested value of

(N, a). The results of performing a linear fit to the exponential decay of

each curve are shown in figure 5.4 where we plot the decay rate c against

the value being factorised N . Simulations were performed for each possible

a value for each N value, resulting in decay rates for multiple r values for

each N . Note that we fit to all of the data for each (N, r) pair which in

general may include more than one a value. To a good approximation the

operation of Shor’s algorithm depends only upon the value of N and r and

so neglecting the differences between evolutions with different a values but

the same r values simplifies the analysis of our results. It is apparent from
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Figure 5.4: The decay rates (c) of the probability of success of Shor’s algo-
rithm with increasing probabilities of Z errors on each qubit at each time
step. Dotted lines divide results with different numbers of qubits. The colour
of each data point encodes the value of r in the corresponding simulation.
The line of best fit is shown as a blue dotted line.

figure 5.4 that the decay rate is principally determined by how many qubits

n = dlog2(N)e are used in the simulation. The number of qubits directly

determines the number of gates and the number of errors and so we would

expect this to be the case. The decay rate appears to be dependent to a

lesser degree on the values of N and r; however we can detect no trend in

the size of c as N is varied (with n the same).

We also show the line of best fit to the data in figure 5.4, which specifies

a relationship between N and c of c = (18 ± 2 + (2.49 ± 0.09)N)f(a, r)

where f(a, r) is an unspecified function. This line of best fit does not seem

to adequately capture the behaviour of the data in figure 5.4, although the

clustering of c values for each n makes a more concrete statement difficult

to make. As the value of c is principally determined by n rather than N ,

we might expect c to depend upon log(N) ∼ n rather than N . Such an

analysis is suggestive of a logarithmic plot, and so in figure 5.5 we show c

plotted against N on a log-log scale. The linear relationship here indicates

that log(N) = α + β log(c) or equivalently c = AN b. The gradient of this

line of best fit gives b = 0.69±0.03. This linear fit appears visually to better

reflect the data. However, as noted above it is difficult to extend this into
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Figure 5.5: The decay rate of the probability of success of Shor’s algorithm
with increasing probabilities of Z errors on each qubit at each time step
plotted on a log-log scale, as well as the line of best fit.

a more rigorous statement. To do so, we would need to determine the c

value for larger N values which correspond to larger numbers of qubits in

the simulation.

It appears broadly from figure 5.4 that the value of c decreases as r in-

creases, but there are numerous cases in which this is not the case and few

N values have enough corresponding values of r to draw concrete conclu-

sions. To elucidate the relationship between N and r we plot the values of c

against r in figure 5.6 for all cases in which n = 5 and n = 6 and for which r

is even (figure 5.4a) and odd (figure 5.4b) We note that c is the lowest (and

the decay slowest) when r is a power of two, and c decreases with increasing

powers of 2. Additionally, c is higher for odd values of r than for even values.

Otherwise, there does not seem to be any trend between increasing values

of r and the value of c, although more data would be needed to confirm this

statement. To explain the behaviour of c as r is varied we need to know

where the entanglement between different qubits is concentrated in Shor’s

algorithm, which we will explain in the next section. As such, we will return

to the explanation of this behaviour in section 5.5.1.

5.5 Entanglement in Shor’s algorithm

We will develop the notion of how much entanglement is present in Shor’s

algorithm by considering the different kinds of values which r can take. We
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Figure 5.6: All decay rates c of the probability of success of Shor’s algorithm
with increasing probabilities of error per qubit per time step for all N values
with n = 5 (yellow curves) and n = 6 (blue curves) with (a) even values of
r and (b) odd values of r. Values of r which are a power of two are shown
with dotted lines in (a).

first consider values of r which are powers of two. In this case Kendon

and Munro [142] (henceforth KM) found that only the first qubit in the

upper register is entangled with the lower register when r = 2 and the

first two qubits in the upper register with the lower register when r = 4.

They also found that there is no pairwise entanglement within either register

(quantified by the concurrence) when r = 2.

We write the co-prime of N as y and so the modular exponentiation

gate is U j |x〉 =
∣∣(xyj) mod N

〉
. In this case we write the period of the

modular exponentiation procedure as r = 2a and so U2a = I. The modular

exponentiation part of Shor’s algorithm applies gates in increasing pow-
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ers of 2 and so the jth controlled gate is U2j−1
. If we set j > a then

U2j−1
=
(
U2a

)2j−1−a
= I. All modular exponentiation gates after the ath

gate are thus the identity. All gates before this will be a permutation of the

two permissible values in the lower register. As such, the first a gates will

entangle their control qubits with the lower register but the remaining gates

will not. As we swap the first control qubit to the top position in the upper

register and so on, this will result in the top a qubits in the upper register

being entangled with the bottom register, but none of the other qubits in the

upper register displaying any entanglement with each other or the bottom

register. This explains and generalises the first of KM’s observations.

We now consider the pairwise entanglement between individual qubits

in the same register when r is any power of two. In this case there are r

permissible values in the lower register which are entangled with the r states

in the first a qubits of the upper register but not with any others. It is clear

that the 2l−a bottom qubits in the upper register are separable and so have

no pairwise entanglement between themselves or with other qubits in the

top register. The remaining a qubits encode r different computational basis

states which are entangled with r orthogonal states in the lower register.

Tracing out the lower register and all except two of the first a qubits in

the upper register will then produce the mixed state ρ = 1/4(|00〉〈00| +
|01〉〈01| + |10〉〈10| + |11〉〈11|). The concurrence of this fully mixed state is

zero. Similarly, to consider the reduced density matrix of any two qubits

in the lower register we note that each of the basis states in the upper

register is orthogonal and so the reduced density matrix will take the form

ρr = a/4|00〉〈00|+ b/4|01〉〈01|+ c/4|10〉〈10|+ d/4|11〉〈11|. This mixed state

has zero concurrence. As such, there is no pairwise entanglement between

any two states in the bottom register or in the top register when r is a

power of two, proving and generalising KM’s second observation. We note

that our argument about the reduced state of the lower register can be

straightforwardly generalised to any period r, showing that during Shor’s

algorithm there will never by any pairwise entanglement in the lower register.

We now consider r values which are odd. In this case, it is clear that the

upper register and the lower register are entangled. However, the periodic

structure of the entanglement of the upper and lower registers cannot be

localised to any individual qubits in the upper register. Rather, the whole

upper register is entangled with the permissible states in the lower register.
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As such, tracing out any qubit in the upper register will always decrease

the entanglement between the upper and lower registers. Tracing out more

qubits in the upper register will in turn lead to a mixed state displaying even

less entanglement between the upper and lower registers. An implication of

this is that in the large N limit with small r, there will be no entanglement

between any single qubit from the upper register and the lower register. We

illustrate this in figure 5.7 which shows the log negativity between any of

the first a qubits in the upper register and the lower register after time step

a of the modular exponentiation with N = 1898, a = 1389, r = 3. The

first modular exponentiation gate fully entangles the first qubit with the

lower register, but each subsequent gate decreases the log-negativity of any

previously used qubit with the lower register.
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Figure 5.7: The log-negativity between any of the first a qubits in the upper
register and the lower register of Shor’s algorithm during modular exponen-
tiation for the factorisation of N = 1898 and a = 1389 giving r = 3.

We now consider r values which are even, but which are not powers of

two. In this case we can write r = b ·2a where b is odd. We divide the upper

and lower registers into the last a qubits and the other qubits. To simplify

our notation, We also consider the permissible states in the bottom register

to be {|0〉, |1〉, . . . , |r〉}. Up to a normalization constant, taking 2n qubits in

the upper register, we can write the periodic state formed by the modular

exponentiation process as:

|0, 0〉|0, 0〉+ |0, 1〉|0, 1〉+ . . .+ |0, 2a〉|0, 2a〉+ |1, 0〉|1, 0〉+ . . .

+ |b, 2a〉|b, 2a〉+ |b+ 1, 0〉|0, 0〉+ |b+ 1, 2a〉|0, 2a〉+ . . . (5.5)
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We can see from (5.5) that the last a qubits of the upper register and the

last a qubits of the lower register are maximally entangled. The remaining

qubits in the upper and lower register are entangled, but to a lesser degree

than the last a qubits in each register. This remaining entanglement will be

multipartite across all remaining qubits in the upper and lower registers, as

we discussed for the odd r case. There will be no entanglement between any

of the first 2n− a qubits in the upper register and the lower register in the

large N limit. Our way of writing the lower register here is not fully general.

However, we can perform a unitary permutation to the whole lower register

of (5.5) and recover a state with a general lower register. As a unitary

operation on the lower register cannot change the entanglement between

the upper and lower registers, our conclusion that the last a qubits of the

upper register are highly entangled with the lower register is fully general.

Similarly, the first 2n− a qubits in the upper register are always entangled

with the lower register, but to a lesser extent than the last a qubits and with

the entanglement spread across all of these upper register qubits. Note that

the qubit ordering we have considered here in the upper register is different

to the ordering we usually consider. That is, we usually consider (as in our

discussion of entanglement with r a power of 2) the upper register to be

reversed.

5.5.1 The decay of success probability with different r values

We are now in a position to explain figure 5.6, which shows how c varies

with r. To explain this behaviour, we assume that decoherence which is

more destructive to the entanglement of the state will be more destructive

to the usefulness of the algorithm. We note that while this assumption

produces the correct implications for the variation of c with r, it is still an

assumption.

The value of c, and so the rate of decay of the probability of success of

Shor’s algorithm, is lowest for r values which are a power of 2. If r = 2a,

then only the first a qubits are entangled with the lower register. As such,

errors occurring on the remaining qubits do not impact on the entanglement

of the state. We would expect that this would decrease the rate of decay of

probability of success, as we have observed.

From figure 5.6 we can conclude that c is lower for even r values than for

odd r values. With reference to the entanglement in the algorithm, we note
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that for even r, most of the entanglement is concentrated in a subset of the

qubits in the upper register. Errors uniformly distributed throughout the

algorithm will thus have be less destructive to the entanglement of the state

in this case than if the entanglement was completely multipartite between

all upper and lower register qubits. As such, we would expect that the

algorithm would be more robust with even values of r than odd values of r,

as we observe.

Finally we note that when r is odd, the value of c appears to remain

roughly constant independent of the value of r. Following on from our

analysis of the entanglement present in Shor’s algorithm, for odd values

of r the entanglement between the upper and lower registers is distributed

across the entire upper register regardless of the value of r. The upper

register is twice as large as the lower register and so the majority of errors

will affect qubits in the upper register. Additionally, the lower register

is sparsely populated with permissible states. As such, we would expect

that the decline in entanglement between the registers would be relatively

constant with different odd values of r. We observe such an effect in figure

5.6 for the value of c as r is varied.

5.6 Discussion

In this chapter we have extended the MPS simulation technique of WHH

to include Z errors occurring anywhere in the simulation. Our techniques

mostly concern the isolation of parts of the computation that are repeated

in the same way every time the computation is performed. In this way, we

minimise the time required to perform multiple stochastic simulations of the

algorithm with different errors occurring at different times and in different

locations. In this context, all Z errors can be moved out of the QFT and the

operation of the QFT is the same every time it is performed. We thus recover

a motivation for our work on characterising a tensor network representing

the QFT in chapter 4.

While it is possible to perform simulations of large instances of Shor’s

algorithm with Z errors using our techniques, the same methods cannot be

applied to other error models. Most notably, X errors occurring during the

modular exponentiation step of the algorithm quickly cause a highly entan-

gled state which is not easy to represent with a MPS. It is not clear how
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a MPS simulation of Shor’s algorithm could be performed with such noise

occurring. For general noise models, a state vector or density matrix simula-

tion, such as those that are usually developed to simulate Shor’s algorithm,

may have to be employed.

Different error models are used in each past noisy simulation of Shor’s

algorithm. Because of this, as well as the different approaches taken to per-

forming the simulation and interpreting the results, it is difficult to directly

compare the results obtained. Broadly (although with exceptions noted in

section 5.1.3), past work has found that with increasing error size, the suc-

cess of Shor’s algorithm decreases exponentially. We obtain such a result,

with the added issue that the decay rate of the algorithm appears to in-

crease linearly with the number being factorised, and so exponentially with

the number of qubits. In light of this result, an increase in the size of the

algorithm would cause a sizable drop in the effectiveness of the algorithm

with even a small probability of errors occurring. Such a scaling of the decay

rate bodes very poorly for the scalability of Shor’s algorithm without a fully

fault-tolerant quantum computer.

While in this chapter we have described techniques by which very large

simulations of Shor’s algorithm may be performed, the simulations we have

performed have been relatively modest in size. Our simulations were per-

formed on a single core of a laptop computer and serve mainly as a proof of

principle of our techniques rather than a full exploration of their use. Our

simulations were exhaustive (we simulated all possible co-primes for every

value of N) and it is probable that further time savings could be found in

future simulations. In particular, our simulations used the full MPO of the

QFT, while if only a small number of output coefficients were considered the

QFT can be converted into a series of bond size one projectors (this point

is noted in section 5.2). It would also be worthwhile to consider simulating

Shor’s algorithm with a single control qubit, as has enabled the large simu-

lations of [151], or with classical modular exponentiation, as in [139]. We are

confident that with these improvements, and access to more computational

power, our techniques may be employed for very large simulations.



Chapter 6

Simulation of Grover’s

Algorithm

In this chapter, we will use MPSs and MPOs to simulate Grover’s algorithm.

Grover’s algorithm has been simulated in the past using a variety of methods.

Most simulations take place either in a specialised reduced subspace (for

example that in which Grover’s algorithm was described in section 2.2) or

with a straightforward state vector simulation. Large state vector or parallel

simulations of Grover’s algorithm include [135, 137, 153, 154]. A notable

exception is the work of Viamontes et al [155, 156, 157], who develop a

simulation technique using a data structure called a Quantum Information

Decision Tree, which is an extension on data structures used to perform

simulations of classical logic circuits. This structure is used to perform

classical gate simulations of Grover’s algorithm with with one solution and

40 qubits in under 23 hours. There has also been prior work on using tensor

networks to simulate quantum search. Kawaguchi et al [158] perform a

tensor network based DMRG simulation of Grover’s algorithm for up to 35

qubits In [159] a MPS is used to simulate a Bruschweiler search, which is a

quantum search taking place in a bulk ensemble quantum computer. Finally,

an example program showing the simulation of Grover’s algorithm with a

MPS is given in [160].

Many papers have been published which simulate Grover’s algorithm in

the presence of various kinds of noise and calculate the affect on the success

of the algorithm. In general these papers perform simulations of limited sizes

explicity storing the state vector or density matrix. Some exceptions include

98
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[161] which takes advantage of symmetries in the density matrix to perform

large simulations and [162, 163] which uses perturbation theory to calculate

the probability of success of Grover’s algorithm with dephasing noise of a

small size. Many different error models are considered including imperfect

gates [164], unitary imperfections in the Hadamard operators [165, 166],

phase noise [167, 168, 162, 163], noise in the oracle [169, 168], dissipative

noise [170, 89], depolarising noise [171], static inter-qubit interactions [172]

and physical noise models based on realistic architectures or external fields

[173, 174, 175]. In general past works have found that there is an exponential

decrease in the probability of success with increasing noise levels, and in the

work of Zhirov [170] and Salas [171], on the number of qubits. Several

papers find a scaling for the allowable noise if Grover’s algorithm is still to

outperform classical search of ε = N−a, where ε is the size of the noise and

the value of a depends upon the study and the noise model used [167, 166,

169, 171].

In section 6.1 we will summarise the circuit decomposition of Grover’s

algorithm and in section 6.2 describe how such a decomposition can be used

to simulation Grover’s algorithm with MPOs. We detail a technique to de-

termine the solution to a search problem given the MPO of its oracle in

section 6.3 and discuss the implications of this technique for the compu-

tational capability of the algorithm. We perform simulations of Grover’s

algorithm in section 6.4 and determine how the success of the algorithm

scales with increasing levels of noise and numbers of qubits.

6.1 Quantum circuit for Grover’s algorithm

In order to represent Grover’s algorithm an a MPO, we need to write the

algorithm in a circuit format. As detailed in section 2.2, Grover’s algorithm

can be performed in the following stages:

1. Prepare a state |ψ0〉 = |0 . . . 0〉 and perform a Hadamard gate on each

qubit.

2. Complete the Grover iteration r times. Each iteration consists of:

(a) Apply the oracle O, |i〉 → (−1)f(i)|i〉.

(b) Apply the inversion about the mean operator 2|ψ〉〈ψ| − I.
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3. Measure each of the qubits. The result is likely to be a solution to the

search problem.

To convert this prescription into a quantum circuit, we consider the

inversion about the mean. As we know that |ψ〉 = H⊗n|0〉, and H⊗nIH⊗n =

I, so we can rewrite the inversion about the mean:

2|ψ〉〈ψ| − I = H⊗n (2|0〉〈0| − I)H⊗n (6.1)

The term (2|0〉〈0| − I) is equivalent up to a global phase to an operator

which applies a −1 phase to |0〉, but not to any other computational basis

state. The operator 2|0〉〈0| − I can be further decomposed into a universal

set of gates such as one including H, X and CNOT. We show a decomposition

involving H, X and a Toffoli gate in 6.1. Note that a n qubit Toffoli gate

can be easily decomposed into a series of CNOT gates.

X • X

X • X

X • X

X H H X

Figure 6.1: A quantum circuit for the operator −2|0〉〈0|+ I for four qubits,
which is equivalent up to a global phase to 2|0〉〈0| − I.

Combining this gate decomposition with the general prescription of

Grover’s algorithm outlined above allows us to write Grover’s algorithm

as a quantum circuit. A quantum circuit for four qubits is shown in figure.

|0〉 H

O

H X • X H

|0〉 H H X • X H

|0〉 H H X • X H

|0〉 H H X H H X H

Figure 6.2: A quantum circuit to perform Grover’s algorithm with 4 qubits.
The dotted lines enclose the Grover iteration, which must be repeated mul-
tiple times to obtain the solution with a high probability.
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6.2 Simulation with a MPO

It is possible to take the circuit described above, select a specific oracle

and decompose both this oracle and the n qubit Toffoli gate into individual

CNOT gates and then to perform a MPO circuit simulation as described in

section 3.4. However, it is easier to directly construct MPOs which encode

the inversion about the mean operator and the oracle, and then to use

these MPOs together with the other circuit elements to simulate Grover’s

algorithm. We will detail our full simulation technique and its time scaling in

section 6.2.5, after first describing the construction of the relevant MPOs for

parts of the quantum circuit in sections 6.2.1 and 6.2.2 and the complexity

of the oracle MPO in section 6.2.3.

6.2.1 A MPO encoding inversion about the mean

It has previously been shown [176] that there is an equivalence between

MPSs and MPOs and finite state weighted automata. As such, if an au-

tomaton can be written that produces an operator, it can be converted into

a tensor network describing it. We use this technique to obtain an operator

for inversion about the mean. It is straightforward to apply one qubit gates

to a MPO and so from (6.1), we note that we only need to produce a MPO

encoding the operator 2|0〉〈0| − I. To do this, we will write a simple algo-

rithm which produces the coefficient |i〉〈j| = |i1, . . . , in〉〈j1, . . . , jn| in this

operator:

a ← 0

for each qubit k do

if ik 6= jk then return 0

end if

if a = 0 and ik = 1 then a← 1

end if

end for

if a = 0 then return 1

elsereturn −1

end if

We can draw connections between this algorithm and a finite state automata

by noting that the variable a encodes the state of the system and can take

two values: 0 and 1. We additionally have the variable k which encodes
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which qubit is being addressed. We could thus write this algorithm as a

finite state automata where a is the state of the system and there are k

individual decision points, each corresponding to one qubit. Such a finite

state automata can be translated into a MPO by using the state of the

system (a) as the bond index and encoding the decision structure of the

automata into the tensors. Doing so provides us with a set of tensors:

Γ
[0]0
ij = δijδi0, Γ

[0]1
ij = δijδi1,

Γ
[k]00
ij = δijδi0, Γ

[k]11
ij = δijδi1, k 6= n,

Γ
[n]0
ij = −δijδi0, Γ

[n]1
ij = δijδij , (6.2)

where all other elements are zero. We set all bonds to be evenly weighted

across all indices: λ[k] = (1, 1). This MPO is not in canonical form, but we

can easily transform it to canonical form by doing a series of SVDs.

6.2.2 MPOs encoding arbitrary oracles

To elucidate the construction of a MPO of any oracle we first consider con-

sider the construction of a MPO encoding an oracle with a single solution.

We define a set of functions {fk(i)} which return 0 if i is not the kth digit

of the solution and 1 if it is. In this case the algorithm to determine the

|i〉〈j| = |i1, . . . , in〉〈j1, . . . , jn| coefficient will be exactly the same as the one

described in section 6.2.1, but instead of testing if ik = 1, we test if f(ik) = 0,

and we swap the return values. We can then follow the same procedure to

obtain a series of tensors encoding the oracle:

Γ[0] =

( [
f0(0) 0

0 f0(1)

][
1− f0(0) 0

0 1− f0(1)

] )
,

Γ[k] =


[
fk(0) 0

0 fk(1)

][
1− fk(0) 0

0 1− fk(1)

]
[

0 0

0 0

] [
1 0

0 1

]
 ,

Γ[n] =


[
fn(0) 0

0 fn(1)

]
[
−1 0

0 −1

]
 . (6.3)
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We use λ[k] = (1, 1) for each of the vectors.

To compute a MPO for an oracle of arbitrarily many solutions, we com-

pute an oracle using (6.3) for the first solution, and then a MPO for each

additional solution which encodes an operator of the form −2|s〉〈s|, where

s is the solution. This MPO has only a single non-zero coefficient, so it is

easy to write a series of tensors which generate it:

Γ
[k]
ikjk

= δikjkδf(ik) 1, λ[k] = (1) for all k, (6.4)

where we have implicitly set all bonds to size one, and so have not notated

them. By adding the first solution’s MPO with each of the remaining MPOs

and performing a series of SVDs each time, we will obtain a canonical MPO

representation of a oracle with an arbitrary number of solutions.

6.2.3 The complexity of the oracle MPO

To simulate Grover’s algorithm, it is necessary to select a specific subspace

of computational basis states to be the solution to the search problem, and

then to construct an operator to perform the required oracle operation in

the algorithm. In this context, it is worthwhile to ask how complex the MPO

representation of the oracle is for different solution subspaces. We addition-

ally ask what implications this has for the complexity of Grover’s algorithm

and when it would provide a speedup over doing a classical computation.

If we have n qubits, the Hilbert space in which the search takes place

is H⊗n2 while if there are m solutions, the solutions will be located in a m

dimensional subspace of the larger Hilbert space. The oracle in this case is

an operator which applies a phase of −1 to the coefficient of each element

in the solution subspace but does not affect the other coefficients. We will

consider a function f(x), which when given the index of a computational

basis state in the overall Hilbert space, returns 1 if the state is a solution to

the search problem and 0 otherwise. In this case, we may write the oracle

as:

Ô =

2n∑
i=1

(−1)f(i)|i〉〈i| (6.5)

We can then consider a bipartition of this operator into two equally sized

halves l|r. The Hilbert space of each of these partitions will then have
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dimension d = 2n/2 and so we may write

Ô =
d∑

l,r=1

(−1)f(ld+r)|l〉〈l| ⊗ |r〉〈r| (6.6)

We can write this operator using tensor notation across this bipartition:

Ô =
d∑

il,ir,jl,jr=1

Oirjriljl
|jl〉〈il| ⊗ |jr〉〈jl|, Oirjriljl

= δiljlδirjr(−1)f(ild+ir) (6.7)

We can write this tensor in a matrix, where the rows encode the operator

in the left partition whose coefficient is being described, and the columns

the operator in the right partition:

O =



(−1)f(1) 0 · · · 0 (−1)f(2) 0 · · · · · · 0 (−1)f(d)

0 0 0
...

...
...

0 0 0

(−1)f(d+1) 0 · · · 0 (−1)f(d+2) 0 · · · · · · 0 (−1)f(2d)

0 0 0
...

...
...

...
...

...

0 0 0

(−1)f((d−1)d+1) 0 · · · 0 (−1)f((d−1)d+2) 0 · · · · · · 0 (−1)f(d
2)


(6.8)

This matrix is clearly similar to another matrix in which we eliminate all

rows and column which have no non-zero elements.

O ∼


(−1)f(1) (−1)f(2) · · · (−1)f(d)

(−1)f(d+1) (−1)f(d+2) · · · (−1)f(2d)

...
...

. . .
...

(−1)f((d−1)d+1) (−1)f((d−1)d+2) · · · (−1)f(d
2)

 (6.9)

The new matrix (6.9) has d rows and d columns as we have eliminated all

elements which encode coefficients for operators |i〉〈j|, i 6= j in each parti-

tion. The rank of a matrix is the number of linearly independent columns or
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rows that it contains, and so the rank of the matrix (6.9) will be one greater

than the minimum of the number of rows and the number of columns that

contain at least one −1. As we have written the matrix (6.9) by differenti-

ating between the left and right partitions of the Hilbert space, the rank of

the matrix is the Schmidt number of the operator O. For example, if there

is one solution to the search problem, the Schmidt number of oracle will be

2. If there are two solutions to the search problem, the Schmidt number of

the oracle can be either 2 or 3. As (6.9) has d = 2n/2 rows and columns, the

maximum Schmidt number of the oracle will be 2n/2 + 1. By comparison,

the maximum Schmidt number of an operator on n qubits is N = 2n, and

so the oracle has a Schmidt number of approximately
√
N .

6.2.4 Using two MPOs for simulation

When discussing the computational complexity of Grover’s algorithm and its

entangling properties, it is useful to construct an operator using the MPOs

for inversion about the mean and the oracle described above, as well as the

appropriate one qubit gates. However, it is difficult to construct an operator

in this way to simulate the algorithm on many qubits. To see why this is the

case, we consider the action of a single Grover iteration on a computational

basis state |φ〉. A randomly selected state is very unlikely to be a solution

of the search problem, so the oracle will most likely act as the identity on

|φ〉. The inversion about the mean will act on |ψ〉 in the following manner:(
2|ψ〉〈ψ| − Î

)
|φ〉 = 2〈ψ|φ〉|ψ〉 − |φ〉. (6.10)

As |ψ〉 is an equal superposition of all basis states, 〈ψ|φ〉 will be small and

so the overall action of a Grover iteration on |φ〉 is to a good approximation

that of the identity operator. A similar conclusion can be drawn for an

operator composed of many Grover iterations. This presents a complication

for MPO based simulation as the operator of a series of Grover iterations

will only slightly different from the MPO of the identity operator. This

will lead to singular value vectors in the bonds of the MPO which contain

one very large number (almost 2n/2 where n is the number of qubits) and

a series of much smaller values. As the number of qubits is increased, the

larger value will dominate the smaller values and so the condition number

of the SVDs used in simulation will increase. We would thus need to use
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high precision numbers to perform effective simulations with many qubits.

By constructing MPOs of the full Grover operator for several sizes and

numbers of Grover iterations, we find that the largest singular value is ap-

proximately 2n/2, as expected, while the smaller singular values remain a

roughly constant size as the number of qubits is increased. The condition

number of SVD problems will thus increase exponentially with the number

of qubits. Allowing for the number of operations performed to form a MPO

and for the sizes of the smaller singular values to vary by a few orders of

magnitude, this will quickly cause the computation of the MPO to become

difficult to perform.

This issue can be resolved by noting that Grover operators differ only

slightly from identity operators, and so there is only one large singular value

in MPOs encoding Grover operators. As such, we can reduce the MPOs we

are forming into a sum of a separable operator and a much smaller deviation

operator:

Û = Ûs + Ûd (6.11)

We now outline how to perform operations on these separable deviation

operators (henceforth SD-MPOs). In Grover’s algorithm we are required

to perform one qubit unitaries, find the products of SD-MPOs and finally

apply SD-MPOs to MPSs. By explicitly constructing MPOs representing the

oracle and inversion about the mean operators, we do not need to perform

any two-qubit unitary gates.

To apply a one qubit gate V̂ to a SD-MPO, we just apply it to both

constituent operators

V̂ Û = V̂ Ûs + V̂ Ûd. (6.12)

To apply one SD-MPO to another, we perform several operator-operator

products:(
V̂s + V̂d

)(
Ûs + Ûd

)
= V̂sÛs +

(
V̂sÛd + V̂dÛs + V̂dÛd

)
. (6.13)

As both Vs and Us are separable, V̂sÛs is also separable. Additionally, as

separable operators, Vs and Us only codify a preferred basis. We would not

expect one qubit unitaries to change the size of a small operator, and so
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V̂sÛd and V̂dÛs are both small deviations from the separable operator. As

the product of two small deviation operators, V̂dÛd is also a small operator.

As such, (6.13) is in the form of (6.11). To apply a SD-MPO to a MPS,

we first apply the separable operator, and then the deviation operator, and

then add the resulting MPSs. We may also contract both of the resulting

MPSs when a coefficient is required and then add the resulting coefficients.

In order to construct a SD-MPO of Grover’s algorithm, we consider the

oracle as the sum of the of the identity operator and a deviation for each

search solution a ∈ {s}:

Ô = Î − 2
∑
a∈{s}

|a〉〈a|. (6.14)

We can form this SD-MPO for one solution as outlined in section 6.2.4. It

is straightforward to generalise to oracles with larger number of solutions.

We consider the inversion about the mean to be formed by the quantum

circuit shown in figure 6.1, and so to create a SD-MPO for this process we

need to form a SD-MPO representing the Toffoli gate, and then apply local

one qubit gates to it. The separable part of the Toffoli gate is the identity

and the deviation is the operator |1 . . . 1〉〈1 . . . 1| ⊗
(
X̂ − Î

)
. We can create

this deviation MPO with the tensors:

Γ
[k]
ikjk

= δik1δjk1, k 6= n, Γ
[n]
inkn

= (X − I)injn (6.15)

6.2.5 Simulation technique

We simulate a single run of Grover’s algorithm with n qubits, a given set

of solutions {s} and m Grover iterations by constructing a SD-MPO of the

overall operator of the algorithm. We construct this SD-MPO in several

steps.

1. Construct a SD-MPO for a single Grover iteration. To do this we

break the Grover iteration into an oracle call and inversion about the

mean. We have detailed in sections 6.2.1, 6.2.2 and 6.2.4 above how

to construct these SD-MPOs. The oracle SD-MPO can then be ap-

plied to the inversion about the mean SD-MPO, interspersed with the

appropriate one qubit gates.

2. We construct a series of SD-MPOs encoding the Grover iteration op-
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erator raised to increasing power of two, up to the power of two whose

value is directly below m:

Ĝ20 , Ĝ21 , Ĝ22 , . . . , Ĝ2blog2mc . (6.16)

In this series, each operator is the square of the previous operator and

so each SD-MPO can be formed by applying the previous SD-MPO to

itself.

3. We construct a SD-MPO encoding the correct number of Grover it-

erations. To do this, we start with a separable MPO of the n qubit

identity and a deviation MPO of 0. For each 1 in a position k of the

binary representation of m, we apply the kth operator in the series

(6.16). Doing so leads to a MPO representation of m Grover itera-

tions. The preliminary Hadamard gates can now be applied to the

start of the operator to complete the SD-MPO.

The SD-MPO resulting from these steps can be applied to the MPS state

|0 . . . 0〉 and a contraction performed to calculate the probability of an out-

come from a single run of Grover’s algorithm. By constructing a MPO

representing Grover’s algorithm with a variety of numbers of qubits, num-

bers of solutions, solutions and numbers of Grover iterations, we found that

the maximum bond dimension of the SD-MPO is (s + 1)2, where s is the

number of solutions.

We now consider the time required to perform this simulation. Con-

structing a MPO for the first Grover iteration requires us to apply a Toffoli

SD-MPO, which will have bond size 2, to an oracle SD-MPO, which will

have bond size s if s is small (this bond size is obvious from (6.14)). This

operation will take time O(s2n), where n is the number of qubits. We

must then produce the list of dlog2(m)e SD-MPOs by repeated squarings.

Each of these SD-MPOs will have bond size of O(s2) (this is the observed

maximum bond size of the SD-MPO with s solutions), so each squaring

will take time O(ns4) for the tensor multiplications, producing tensors with

bond size O(s4 + 2s2) ∼ O(s4). The series of SVDs immediately after the

multiplications will then take time O(ns12), as a single SVD will take time

O((s4)2 · s4). As we must perform O(log(m)) of these squarings, producing

the list of SD-MPOs will take a total time of O(ns12 log(m)). The final op-

erator will be formed by starting with the identity and multiplying at most
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every one of this list of operators by the identity. The SD-MPO formed after

each multiplication will have a bond size less than or equal to the maximum

observed and this operation will take an amount of time in the worst case

of the same order as the formation of the list of SD-MPOs. The amount

of time required for the formation of a SD-MPO for the entire algorithm is

then O(ns12log(m)) = O(s12 log(N) log(m)).

6.2.6 Simulation technique with errors

We perform simulations with errors in the algorithm immediately after each

Grover iteration. We perform simulations with fixed numbers of X, Y and

Z errors. The simulations are performed stochastically with discrete errors,

and then the results averaged after a large number of random runs.

To perform a single simulation run with ne errors and m Grover itera-

tions, we produce a random sample of ne integers less than m. Each integer

corresponds to the time step (number of of Grover iterations elapsed) at

which an error occurs. By sorting these time steps and taking the differ-

ences between adjacent integers, we can find a series of ne − 1 numbers of

iterations which take place between errors. We then construct a series of

MPOs for each number of iterations. We apply the iteration operators, in-

terspersed with errors at random qubit locations, to the initial MPS. We

can finally determine any required coefficients after the application of all

operators. We find the probability of success of the algorithm with a given

number of errors by keeping a running average of the probabilities of suc-

cess as we perform individual pure state noisy simulations. Other interesting

quantities can be found analogously.

By constructing SD-MPOs for a range of numbers of qubits, numbers

of solutions, solutions, numbers of Grover iterations, numbers of errors and

types of errors (X, Y Z and a combination of each of these), we find that

the presence of errors does not affect the overall bond size of the SD-MPO

of the algorithm. This is a surprising result and is in contrast to the results

presented in chapter 4, in which introducing small errors in the algorithm

was found to have the potential to dramatically increase the bond size. The

result that the bond size in Grover’s algorithm does not change with the

addition of errors can perhaps be explained in the light of a SD-MPO by

considering that an error is a one qubit unitary, and so it only changes the

preferred basis of the operator in the separable part of the SD-MPO (as well
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as in the deviation part). Our result indicates that it does not otherwise

affect the operation of the SD-MPO.

In light of this result, we now consider the amount of time required

to create a SD-MPO of Grover’s algorithm with nq qubits, s solutions, m

Grover iterations and ne errors. We can consider this SD-MPO to be formed

from m+ 1 SD-MPOs each of which contains no errors and is created with

the method outlined in section 6.2.5. In the worst case the errors will be

unevenly spaced throughout the number of time-steps, such that the size

of the list of SD-MPOs must be the same size as in the noiseless case with

the same number of Grover iterations. In this case, the cost of creating

each of the SD-MPOs will be (on average) O(nq log(m)s12), and as we are

forming ne of these SD-MPOs, the time required to create them will be

O(nqne log(m)s12) (we note that if the number of errors is large this scaling

will not be accurate as the cost of forming the largest SD-MPO will be

amortized across the time of formation of the other SD-MPOs). We must

then perform ne operator-operator multiplications to form the final SD-

MPO. Each multiplication will take time (including the SVDs) O(nqs
12),

and so these multiplications will take a total time of O(nenqs
12). As such,

the overall time for the simulation will be O(nes
12 log(N) log(m)).

6.3 Determining search solutions from MPOs

In order to show the implications of the oracle bond rank found in section

6.2.3 for the complexity and usefulness of Grover’s algorithm, we will only

consider the classically most difficult search problem in which there is one

solution. In this case, the Schmidt number of the oracle, and its maximum

bond rank in a MPO representation, is 2.

If we had access to the MPO representation of the oracle, we could find

the solution to the search problem by finding the expectation value of the

oracle over a series of separable states. To illustrate this, we could use the

following procedure (this method is a modified form of the one presented in

[177].

1. On each tensor Γ
[k]αk−1αk
ikjk

in the MPO representation of the oracle Ô,

take the trace over the two quantum state indices to give a new tensor

Γ′[k]αk−1αk =
∑

ik
Γ
[k]αk−1αk
ikik

. This will give a new tensor network with

only ancillary indices whose contraction will give the expectation value
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〈ψ|Ô|ψ〉, where |ψ〉 = 1/2n/2
∑2n

i=1 |i〉. As there is one solution to the

search problem and a total of 2n possible bit strings, this expectation

value will be 1− 2−(n−1).

2. Starting from the rightmost tensor, contract the ancillary indices to

compute a series of vectors Γ′[k...n]αk−1 which encode the contraction

of the tensors Γ′[k] · · ·Γ′[n].

3. On the final tensor (that of the first qubit) Γ
[1]α1

i1j1
, set i1 = j1 = 0,

giving a vector Γ
[1]α1

00 . Multiplying this vector by Γ′[2...n]α1 will give

the expectation value 〈φ|Ô|φ〉, where |φ〉 = |0〉 ⊗ 2−(n−1)/2
∑2n−1

i=1 |i〉.
This expectation value will either be 0, or higher than the expectation

value in step one of 1 − 2−(n−1). If it is higher, the first digit of the

solution will be 0. If it is 0, there are no solutions in the computational

basis states with non-zero coefficients in |φ〉, and so the first digit of

the solution is 1. We set the state indices of Γ[1] to the first digit in

the solution and obtain a vector Γ′[1].

4. Iterate step three over each of the tensors in the MPO. We will de-

scribe this step abstractly for the kth tensor. Set ik = jk = 0, giving

a vector Γ
[k]αk−1αk
00 . Contract this vector with the vector from the

left Γ′[1...k−1]αk−1 , for which each of the tensors Γ[1] . . .Γ[k1] has had

their state indices set to the first k − 1 digits in the solution. Con-

tract Γ′[1...k−1]αk−1Γ
[k]αk−1αk
00 with Γ′[k+1...n]αk , giving the expectation

value 〈φ|Ô|φ〉 where |φ〉 = |s1 . . . sk−1〉 ⊗ |0〉 ⊗ 2−(n−k)/2
∑2n−k

i=1 |i〉 and

|s1, . . . , sn〉 is the computational basis state encoding the solution to

the search problem. If this is 0, the kth digit of the solution is 1,

otherwise it is 0. Take ik = sk to be the kth digit of the solution and

set Γ′[1...k] = Γ′[1...k−1]αk−1Γ
[k]αk−1αk
ikik

After following this procedure, we will have the n bit binary representation

of the solution. The only operations which take place in the above algorithm

are vector-vector contractions, the number of which scales as O(n) where

n is the number of qubits. As the bond size of the MPO representation

of the oracle is 2, this algorithm can be performed in O(n) time. The size

of the search space is N = 2n, and so the run-time for finding a solution

given a MPO of the oracle by MPO contraction is O(log(N)). We note

that this algorithm can be straightforwardly extended to higher numbers
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of solutions, and the same execution time scaling will apply as long as the

number of solutions does not grow as the size of the search space grows.

This algorithm, combined with the low rank of the MPO representation

of the oracle, highlights the subtlety of the status of the oracle in Grover’s

algorithm. If an oracle can be accessed quantum mechanically, Grover’s al-

gorithm provides a quadratic speedup over the best possible classical search.

The results of a specific oracle must be assumed to simulate Grover’s algo-

rithm, for example to determine how it performs under the influence of error.

However, if we have knowledge of how the oracle functions in MPO format,

we can straightforwardly solve the search problem much more easily than

by using Grover’s algorithm.

This result also prohibits us from producing an oracle for which Grover’s

algorithm will be useful using many different kinds of quantum circuits. If

a circuit is provided to solve an oracle (this can be a quantum circuit or

the quantum mechanical analogue of a classical logic circuit), we may start

with a MPO representing the identity matrix and then apply the quantum

circuit to our MPO, in the process calculating the MPO of the oracle. If

Grover’s algorithm is to be useful, this classical calculation must be difficult

and so must require resources scaling exponentially with the number of

qubits. However, we know that the final Schmidt number of the oracle

must be 2. As such, the circuit calculating the oracle must produce very

large amounts of correlation, leading to a MPO with a high Schmidt number.

Interference must then occur between different parts of the system, leading

to the required maximal Schmidt number of 2 across every bond. Grover’s

algorithm cannot be useful for any search problem whose oracle is produced

by a quantum circuit which is strictly local. Similarly, a quantum circuit

with a logarithmic number of gates in the total size of the Hilbert space

cannot produce a large amount of entanglement across the system, and so

cannot produce an oracle for which Grover’s algorithm would be useful.

In order to gain some insight into which problems Grover’s algorithm

would provide no speedup for, we consider how long it would take to calculate

the MPO of an oracle produced by a quantum circuit of ng gates. To make

the mathematics easier, we will refer to bond height h = log4 d, where d

is the bond size. In a MPO, each tensor adds an additional 4 degrees of

freedom with respect to to the previous tensor (these additional degrees

of freedom are the local indices of the operator). As such, because the
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minimum bond size is rank revealing, the bond on each side of the MPO

can be at most four times as large as the bond on the other side. This means

that the bond height can increase by a maximum of one from neighbouring

bonds. This result is a straightforward generalisation of the proof presented

in [177], replacing the number of local indices in a MPS (which is 2), with

the number of local indices in a MPO (which is 4).

If the goal of a quantum circuit is to generate a bond of as much height

as possible, it is clear that at the end of the circuit, the bond heights must

increase at a rate of one per qubit from each end of the line of qubits. They

must thus form a triangle with the maximum bond height in the middle. If

there are n qubits, this triangle will have a maximum height of bn/2c. To

produce this triangle of bond heights in the most efficient pattern, we start

with the identity, in which all bonds are of height 0, and then apply gates

to change every second bond to height 1 (there are bn/2c of these gates).

Each bond of height 0 surrounded by height 1 bonds must then have a gate

applied raising it to height 2. This pattern of gates continues, with each set

of gates operating on positions in the spaces between the previous set. Each

set will contain one less gate than the previous set, and so a total of the

bn/2cth triangular number of gates is required to fully entangle a n qubit

operator.

The SVD requires time O(d3) for a two qubit gate with bonds of either

side of the two qubits of size d. It is the most computationally demanding

part of performing a two qubit gate. As such, using the pattern of gates

above, maximally entangling a n qubit MPO will take time:

O

(
k−1∑
i=0

(k − i)
(
4i
)3) ∼ O (43k

)
, (6.17)

where we denote k = bn/2c. The number of gates required to produce this

entanglement is ng = k(k − 1)/2, and so k ∼
√

2ng and the time required

to produce the entanglement scales as O
(

43
√

2ng
)

. This scaling represents

the maximum amount of time that performing ng gates on an identity MPO

can take. Note that this circuit may take place on a qubit array which is

larger than the number n which we have used in this calculation. In this

case, as long as the circuit is (mostly) localized in a region of n qubits, a

similar amount of correlation will result and this scaling is accurate. If the
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total number of qubits is smaller than n, less correlation can be produced

and the time taken will be less than that calculated.

We can relate the time scaling we have calculated to the total number

of qubits by setting ng = na for some a, in which case we have a calculation

time of O(26
√
2na/2). If we set a higher than two, then we have enough

operations to fully correlate the entire operator, and so this scaling ceases

to be correct. We can provide a lower bound for the execution time in this

case be setting a = 2, and so the time required scales with O(26
√
2n) = N6

√
2,

where N is the size of the space to be searched. In this case, our algorithm

performs considerably worse than a classical search. However, if a < 2,

the time required to perform this search will scale sub-linearly in N , and

our algorithm will outperform classical search. If a < 1, our algorithm will

outperform Grover’s algorithm.

Note that the quantum circuit to form the oracle would actually need

2ng gates to ensure that the final operator encodes a fixed number of solu-

tions and so has bond size O(1). However, this will only apply a prefactor

to na in our scalings and will not affect our conclusions with respect to the

performance of our algorithm at different a values. We also note that a

quantum circuit to produce a specific oracle may not produce the maximum

amount of correlation, and so this scaling will not apply. In this case, ad-

ditional work would need to be performed to ascertain how large the MPO

bonds become during computation of the oracle and thus whether Grover’s

algorithm would be superior to our classical MPO contraction algorithm.

6.3.1 Comparison to the work of Chamon and Mucciolo

Our results build upon earlier work by Chamon and Mucciolo (henceforth

CM) [177]. In CM, a classical version of the MPS is defined, where all

tensors are real and the the value obtained by contracting a MPS with a

particular set of indices communicates the classical probability of measuring

a result instead of the quantum mechanical coefficient. They then present

an algorithm to determine the solution to a search problem given a classical

logic circuit which produces the oracle. Our algorithm in section 6.3 is based

upon this algorithm and so is very similar. However, as the algorithm of

CM uses MPSs instead of MPOs, their are slight differences in the opera-

tion. In particular, instead of forming a MPO with the circuit, and then

manipulating the indices of the MPO, they start with a particular proba-
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bility distribution of input states represented by their classical MPS, and

then apply the quantum circuit to each input state. By changing between

a maximally uncertain input state and a more certain input state (one with

a fixed value on a specific bit), they are able to determine a a single bit of

a bit sequence that is a solution to the search problem. By repeating this

process n times, where n is the number of bits, they can obtain a solution

to the search problem.

Chamon and Mucciolo also perform a scaling analysis to ascertain in

which cases their algorithm would outperform Grover’s algorithm. Their

results state that the maximum bond size in a MPS formed with ng gates

is min
(

2b
√

2ngc, 2bn/2c
)

, and so if ng = na, the algorithm requires time

of O
(
na+1 × 23

√
2na/2

)
. As Grover’s Algorithm takes O

(
2n/2

)
time, the

classical MPS algorithm presented can outperform Grover’s algorithm if

a < 2. Our methods are based upon theirs and so we obtain the same

requirement for the value of a if a tensor network based classical search

algorithm is to outperform Grover’s algorithm. Their scaling is better than

ours due to the exponentiation of a power of two rather than a power of

four. However, our analysis of the final complexity of the MPO of an oracle

provides the additional theoretical insight that a circuit to produce an oracle

may create a large amount of entanglement, but must also destroy it before

the computation concludes. This insight may be useful in the cases in which

the circuit to produce an oracle is not maximally correlating.

6.4 Noisy simulations of Grover’s algorithm

We have performed simulations of Grover’s algorithm with fixed numbers

of errors located between Grover iterations. This is in contrast to the usual

noisy simulation approach, in which there is a probability of decoherence

per time-step. In each case we can obtain a meaningful result by averaging

over a statistically significant number of simulations with discrete errors

occurring on pure states. However, the usual approach is directly connected

to the theory of how a quantum computer would behave, where there is

a fixed coherence time and so a set amount of decoherence per time unit.

While our approach does not reflect this physical reality, it provides more

straightforward insight into how errors will affect the simulation. We can

also recover a probability of success given an error probability per time



6.4. Noisy simulations of Grover’s algorithm 116

step from our results by computing the expected numbers of errors, and

performing a weighted average over these different numbers. We will perform

this calculation in section 6.4.5.

Existing simulations can simulate general quantum noise but are con-

strained to small numbers of qubits. Our simulations concern a regime

where quantum computations are performed with a small but nonzero num-

ber of errors. Our error models are less general than other approaches, but

we are able to simulate much larger systems by assuming a limited error

model. We will obtain analytic results for the affect on one X, Z or Y error

in sections 6.4.1, 6.4.1, and 6.4.3 respectively. We will also simulate larger

numbers of errors in each of these sections.

All simulations were performed with 1000 stochastic noisy simulations for

each number of qubits and number of errors before averaging. The resulting

errors in the probability of success are the standard error. Simulations were

performed for between 2 and 30 qubits and between 0 and 15 errors. In

each stochastic run of a simulation, a single random solution to the search

problem is selected.

In general, Grover’s algorithm can have any number of solutions.To sim-

plify our analytic calculations, we will only consider the case in which there is

one solution to the search problem. We note that this is classically the most

difficult case. As in the introduction to Grover’s algorithm in section 2.2,

we will use the notation that n is the number of qubits, N = 2n is the total

number of elements in the search space, s is the solution, |ψ〉 = 1√
N

∑
i |i〉,

β = |s〉 and α = 1√
N−1

∑
i 6=s |i〉. The state during a noiseless Grover search

will be confined to the subspace spanned by |α〉 and |β〉. Indeed, if we write

a state in this subspace as cos γ|α〉+sin γ|α〉, the action of a Grover iteration

can be written as a rotation:

Ĝ =

[
cos θ − sin θ

sin θ cos θ

]
, (6.18)

where θ = 2 arccos
√

1− 1
N .
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6.4.1 X errors

Analytic result

We first consider the affect of a single X error on the success rate of Grover’s

algorithm. After k Grover iterations, the state of the system |φ〉 will be:

|φ〉 = Gk|ψ〉 = cos

((
k +

1

2

)
θ

)
|α〉+ sin

((
k +

1

2

)
θ

)
|β〉

= a(k)|α〉+ b(k)|β〉. (6.19)

We can rewrite this in terms of |ψ〉 and |s〉:

|φ〉 = a(k)

√
N

N − 1
|ψ〉+

(
b(k)− a(k)√

N − 1

)
|s〉. (6.20)

We now note that |ψ〉 is stabilised by a X gate, regardless of which qubit it

acts upon. As such, when an X error occurs, we can consider its action only

on the state |s〉. We write Xi|s〉 = |sXi〉, which is a computational basis

state which differs from the solution by only one bit.

To evolve this state under further Grover iterations, we must know how

the states |ψ〉 and |sXi〉 evolve under Grover iterations:

GgXGk|ψ〉 = a(k)

√
N

N1
Gg|ψ〉+

(
b(k)− a(k)√

N − 1

)
Gg|sXi〉. (6.21)

The evolution of |ψ〉 is straightforward, as it in the subspace spanned by

{|α〉, |β〉} and is furthermore the initial state of the algorithm.

We can calculate the action of a Grover iteration (and subsequently

many Grover iterations) on a single computational basis state which is not

the solution by breaking the Grover iteration into the action of the oracle

and the inversion about the mean. As the computational basis state we are

considering is not the solution, the oracle acts on it as the identity. The

action of a Grover iteration is then only given by the action of the inversion

about the mean (2|ψ〉〈ψ| − I):

G|sXi〉 =
2√
N
|ψ〉 − |sXi〉 (6.22)

From (6.22) we can see that the action of a Grover iteration on a compu-

tational basis state which is not the solution is to apply a phase of −1 to
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the basis state and produce a small amount of |ψ〉. As such, each additional

Grover iteration applied will produce another phase of −1 and an additional
2√
N
|ψ〉 (up to a phase of −1). By keeping track of the alternating phases,

we can thus show that applying a number g of Grover iterations to the state

|sXi〉 will produce the result

Gg|sXi〉 = (−1)g mod 2|sXi〉+
2√
N

g−1∑
j=0

(−1)j Gg−j−1|ψ〉. (6.23)

We are principally interested in the probability of obtaining the solution

when we measure the system at the end of the algorithm. As such, we

want to compute the coefficient cs = 〈s|GgXGk|ψ〉. To compute this value,

we must compute 〈s|Gg|ψ〉 and 〈s|Gg|sXi〉. We note that 〈s|sXi〉 = 0 and

〈s|Gg|ψ〉 = sin ((g + 1/2) θ), and so:

〈s|Gg|sXi〉 =
2

N

g−1∑
j=0

(−1)j sin

((
g − j − 1 +

1

2

)
θ

)
(6.24)

Explicitly computing this sum:

〈s|Gg|sXi〉 =
1

2
sec

(
θ

2

)
(sin (gθ)− sin (gπ)) (6.25)

By using (6.25) and (6.21) and noting that sin (gπ) = 0, we obtain the

coefficient of the solution given an error after k Grover iterations and with

a total of g − k Grover iterations:

cs =

√
N

N − 1
sin

((
g +

1

2

)
θ

)
a(k) +

1√
N

(
a(k)− b(k)√

N − 1

)
sec

(
θ

2

)
sin (gθ) , (6.26)

Finally, we substitute the values of a, b and cos
(
θ
2

)
into (6.26). We also set
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the total number of Grover iterations to m = g + k to obtain:

cs =

√
N

N − 1
sin

((
m− k +

1

2

)
θ

)
cos

((
k +

1

2

)
θ

)
+

1√
N − 1

[
sin

((
k +

1

2

)
θ

)
− 1√

N − 1
cos

((
k +

1

2

)
θ

)]
sin ((m− k)θ) (6.27)

We can develop some intuition for (6.27) by noting that when an X error

occurs, one of the computational basis states in |α〉 is transformed into |β〉,
and |β〉 is transformed into a computational basis state in |α〉. Before the

X error, the coefficient of |α〉 will be sin ((g + 1/2) θ). After the X error,

the coefficient of |β〉 will be effectively reset to that of 1√
N−1 |α〉 (which is

small) and so the largest contribution to the final coefficient of |β〉 will be the

rotation of the |α〉 state into the solution basis |β〉. The amount of rotation is

given by the value cos
((
m+ 1

2

)
θ
)
, and so together with the small change to

the coefficient of |α〉 brought about by the error, we recover the first term in

(6.27). The second term in (6.27) is due to the smaller effect of the deviation

from the Grover subspace given by |sXi〉 rotating towards the solution due

to the Grover iteration (it is important to note that a component of |sXi〉 is

in the Grover subspace as |sXi〉 is not orthogonal to |α〉).
The value cs is unphysical as it only corresponds to a single pure state

discretisation with one error of a noisy Grover’s algorithm evolution. As an

error can occur at any time step, and will have the same effect no matter on

which qubit it occurs, we can recover the probability of success by averaging

over each possible value of k:

ps =
1

m+ 1

m∑
k=0

c2s (6.28)

With our exact expression (6.27), ps will be very difficult to calculate. How-

ever, we can simplify (6.27) under certain assumptions.

As a first simplification, we can expand each trigonometric term involv-

ing m and set m to the optimal number of rotations in the noiseless case,
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m = bπ/4
√
Nc. Doing so, we obtain:

cs = cos (kθ)

(
cos (kθ)− 1√

N − 1
sin (kθ)

)
+

cos
((
k + 1

2

)
θ
)

√
N − 1(

sin

((
k +

1

2

)
θ

)
− 1√

N − 1
cos

((
k +

1

2

)
θ

))
(6.29)

We may further simplify this expression by taking the limit of large N , in

which case the only term in (6.29) which is relevant is the first one, and so

cs = cos (kθ)2 and ps = 1
m+1

∑m
k=0 cos (kθ)4, which gives the large N limit

of ps to be 3/8.

We could extend our approach to obtain coefficients and probabilities

of success for larger number of qubits. To do this calculation (for exam-

ple) for two errors on different qubits, we would take the coefficient of |β〉
in (6.29) and the corresponding coefficient of |α〉 as a base state, and then

apply a similar analysis to the one employed above, where we express the

state |φ〉 in terms of |ψ〉 and |s〉. The basis state |s〉 will be moved to a

different computational basis state, and so we will have two non-solution

computational basis states slowly rotating towards the solution in the man-

ner of (6.23). Computing such a probability will quickly become in-feasible

for large numbers of errors.

Simulation results

We first consider the case in which only a single X error occurs. This

will allow us to validate our simulation by comparing the results with the

analytic model developed in the previous section. The probability of success

for each number of qubits is shown in figure 6.3, as well as the analytic value

calculated for the large N limit in the previous section of 0.375. As expected,

we note that once the probability of success has converged, the number of

qubits does not affect the probability of success (rather, it takes a fixed

value). We see that the probability of success does converge quickly towards

this value, and agrees with it from around 12 qubits onward. However, there

are significant statistical variations around the analytic value.

The probabilities of success of simulations with several larger numbers

of errors are shown in figure 6.4. We note that the probability of success

for each number of errors converges towards a set value, and once it has

converged the probability is independent of the number of qubits. For a
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Figure 6.3: The probability of success of Grover’s algorithm with a single X
error. Also shown is the analytic value calculated for large N .

large enough number of qubits, it is thus the case that the probability of

success is determined only by the number of errors, and not by the number of

qubits. This is likely a result of structure of Grover’s algorithm which does

not depend on the number of qubits. That is, without errors the algorithm

is restricted to a subspace of two quantum state, |α〉 and |β〉, for any number

of qubits. If errors do not occur on the same qubit, their affects interact very

little (that there is little interaction between qubits in Grover’s algorithm

is indicated by the low MPO bond dimension of any number of Grover

iterations) and have a similar affect on the proportion of the quantum state

within the subspace {|α〉, |β〉} for any number of qubits. We thus suggest

that the suitably large number of qubits we described above may be enough

qubits that there is a small chance of two errors occurring on the same qubit.

The requirement would be different for different numbers of errors, as we

observe in figure 6.4.
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Figure 6.4: The probabilities of success of Grover’s algorithm with several
different numbers of X errors.
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Given that the probability of success of Grover’s algorithm depends only

upon the number of errors that occur, the question naturally arises how this

probability scales with the number of errors. We show the dependence of

the probability of success on the number of errors for a 30 qubit simulation

in figure 6.5. This the maximum number of qubits simulated, and so it

should be the set of simulations that best meets the large N requirement.

This data follows a linear relationship on the log-log plot shown, and so ps

follows a power law ps = anbe, where ne is the number of errors and b is the

gradient of the linear fit on the plot. It appears that a linear relationship is

present on the plot, but the first few data points do not follow it. As such,

we have shown two linear fits on the plot, one in which all of the data (1

error to 15 errors inclusive) has been used to obtain a fit, and one in which

the first tree data points have been disregarded. The latter fit, shown in

blue, is clearly a better fit for the data.
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Figure 6.5: The probability of success of Grover’s algorithm with several
numbers of errors and 30 qubits, the maximum number simulated. Also
shown are two linear fits to this data, including all of the data (red) and
removing the first three points (blue).

It can be seen from figure 6.4 that from approximately 15 qubits onward,

each of the ps curves from 1 to 15 errors has converged to its final value. We

can fit a linear relationship to the log-log decay of ps with ne for each number

of qubits. The gradient of these fits is shown in figure 6.6. We can observe

from this plot that the gradient of the fit is converged from approximately

15 qubits onward, as we would expect. An average of each of the converged

gradients will give us a more accurate estimate of the power with which ps

decays with increasing numbers of errors. Averaging the gradients shown in
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figure 6.6 from 15 qubits to 30 qubits, we obtain b = −1.409± 0.009.
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Figure 6.6: The gradient of the better of the linear fits shown in figure 6.5
for each number of qubits tested. This gradient gives the power in the decay
of ps = an−be , with ne the number of errors.

6.4.2 Z errors

Analytic result

The second error model we consider is that of a fixed numbers of Z errors

between Grover iterations. To calculate the final coefficient of the solution

cs and probability of success ps in this case we will use a different approach

to that we used with X errors. Instead, we will calculate the state of the

system after an error has occurred, and then project this state back into the

subspace formed by the orthogonal states {|α〉, |β〉}.
We will first consider only one Z error as having occurred. In this case,

after k Grover iterations, the system will be in the state (6.19):

|φ〉 = Gk|ψ〉 = cos

((
k +

1

2

)
θ

)
|α〉+ sin

((
k +

1

2

)
θ

)
|β〉

= a(k)|α〉+ b(k)|β〉. (6.30)

After a Z gate, we will have a new state Z|φ〉. We decompose this state into

a part parallel and a part perpendicular to the Grover subspace:

Zi|φ〉 = 〈α|Zi|φ〉|α〉+ 〈β|Zi|φ〉|β〉+ (Zi|φ〉)⊥ (6.31)

We note that the Grover iteration is unitary, and so preserves inner products.

Additionally, all states in the Grover subspace will remain in the Grover sub-
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space under evolution by Grover iterations. As such, a state perpendicular

to the Grover subspace will always be perpendicular to the Grover subspace

if Grover iterations are the only kind of evolution that occurs.

After a Z gate is applied to one of the matrices, exactly half of the

computational basis states will experience a phase shift of −1, and the other

half will be unaffected. We will assume with no loss of generality that the

basis state corresponding to the solution will have a 1 on the bit that the

Z gate is applied to, and so will experience the phase shift. If the solution

instead has a 0 in this location, we will obtain a result which is only different

by a global phase. If the solution experiences a phase flip, then of the N −1

constituent states of |α〉, N
2 − 1 will experience a phase flip and N

2 will not.

As such, 〈α|Zi|φ〉 = a
N−1 , and 〈β|Zi|φ〉 = −b, and we know the projection

of Zi|φ〉 into the Grover subspace (6.31). It is straightforward to write the

part of Zi|φ〉 parallel to the Grover subspace parametrically:

(Zi|φ〉)‖ = s cos γ|α〉+ s sin γ|β〉,

s =

√
a(k)2

(N − 1)2
+ b(k)2, γ = tan−1

(
b(k)(N − 1)

a(k)

)
(6.32)

Each Grover iteration applies a phase of θ in the Grover subspace, so

if we allow m − k Grover iterations to happen after a Z error, mak-

ing a total of m iterations, the part of the state in the Grover subspace

will be s cos (γ + (m− k)θ) |α〉 + s sin (γ + (m− k)θ) |β〉. We are inter-

ested in the coefficient cs of the solution basis state, which is given by

s sin (γ + (m− k)θ) |β〉. Expanding this expression and substituting the val-

ues of a and b, we have:

cs = sin ((k + 1/2)θ) cos((m− k)θ)

+
1

N − 1
cos ((k + 1/2)θ) sin((m− k)θ) (6.33)

As with the cs expression for a single X error, we can expand

each trigonometric term involving m and set m = bπ4
√
Nc, and so

cos
((
m+ 1

2

)
θ
)

= 0 and sin
((
m+ 1

2

)
θ
)

= 0. Doing so, we obtain a new

expression for cs:

cs =

[
sin

((
k +

1

2

)
θ

)]2
+

1

N − 1

[
cos

((
k +

1

2

)
θ

)]2
. (6.34)
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Taking the large N limit in (6.34) eliminates the second term. We can then

square cs and sum over the possible values of k to obtain the probability of

success ps = 1
m+1

∑m
k=0 cos (kθ)4 = 3/8. This is the same value as the large

N limit of ps for a single X error, which is due to the similarity between

(6.29) and (6.34).

Simulation results

We follow similar analysis techniques for the results of simulations with Z

errors as for those with X errors. In figure 6.7 we show ps for between 5

and 30 qubits and select numbers of errors between 0 and 15. The expected
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Figure 6.7: The probability of success of Grover’s algorithm with several
fixed numbers of Z errors and varying number of qubits. The expected
value of ps for 1 error in the large N limit is shown as a red dashed line.

value of ps with 1 error in the large N limit is shown as a red dashed line.

It is clear that the results agree with the expected value for one error from

around 8 qubits onward. As with our X error results, we observe that each

curve quickly converges to its final value, at which point only the number

of errors is important to determine ps. By comparison with figure 6.4 we

see that the Z error curves converge more quickly than those for X errors.

Our explanation of the large N behaviour at which the number of qubits

does not matter in section 6.4.1 did not take account of the effect of two or

more errors occurring on the same qubit. If the effect of this event is more

extreme, the same explanation for the convergence of curves such as those

in figure 6.7 may hold, but the convergence may occur more slowly. There is

thus room in our explanation of large N behaviour for different convergence

rates with different error models. The curves corresponding to each number
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of Z errors between 1 and 15 seem to be converged from approximately 9

qubits onward.
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Figure 6.8: (a) The probability of success ps of Grover’s algorithm with 30
qubits and different numbers of errors, as well as two fits to the data, one
(red) fitting to all data points and the other (blue) fitting to all but the first
three of the data points. (b) The gradients of log-log fits to ps against the
number of errors for different numbers of qubits.

In figure 6.8a we show the dependence of ps on the number of Z errors

for 30 qubits. A linear relation is visible here for all but the first few points

indicating a power law ps = axb. The blue line in the figure is found with a

linear fit excluding the first three data points, and provides a better fit than

the red line, which is fitted to all data points. We show the gradients of

linear log-log fits for each ps, ne curve, where ne is the number of errors, for

each number of qubits in figure 6.8b. The gradients converge to a roughly

common value from around 9 qubits onward, as would be expected from

the results shown in figure 6.7. Averaging over the gradients from 9 qubits

onward provides us with the power of the decay b = −1.41 ± 0.01. This

value is the same within the standard error as that found in section 6.4.1

for X errors. This indicates that in the large N limit, both X and Z errors

(each in isolation) have the same affect on the success of Grover’s algorithm.

Our analytic calculation of the affect of one X or one Z error found that

in the large N limit ps was found in one case by averaging cos(kθ)4 over all

k values, and in the other by averaging sin(kθ)4 over all k values. These

calculations produced the same result. It is likely that a similar result would

follow with multiple errors, whereby averaging over large numbers of errors

locations with two different functions would produce the same result.

The power of the decay of ps with Z errors converges more quickly than

that for X errors. This reflects the physical intuition that a X error swaps a
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state from the |α〉 subspace and the solution state |s〉, but largely preserves

the structure of the {|α〉, |β〉} subspace. Conversely, a Z error flips the sign

of roughly half of the computational basis states in the |α〉 state and so

all but removes this state from the {|α〉, |β〉} subspace. A Z error is thus

intuitively the worse error.

A comparison of figures 6.4 and 6.7 shows that as well as the power of

the decay of ps being the same for X and Z errors, ps is similar for each

number of errors in the large N limit. We illustrate this effect in figure

6.9 where we show the difference between ps for ten X errors and each

number of qubits, and ps for ten Z errors and each corresponding number

of qubits. This difference decreases exponentially between 5 and 15 qubits,

and then remains roughly constant. There is a high amount of variation

in this constant region and the difference takes both positive and negative

values (we have taken the absolute value of the difference in figure 6.9) so

this constant value is a result of the statistical noise visible in the variations

of each converged point around its constant value in figure 6.4 and 6.7. In

a simulation with a greater number of stochastic noisy pure state runs, this

difference would be expected to plateau at a lower value.
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Figure 6.9: The absolute value of the difference between ps for X errors and
for Z errors with ne = 10.

6.4.3 Y errors

Analytic result

The final error model we address analytically is that of having a small num-

ber of Y errors occur between Grover iterations. As with the X and Z errors,

we focus first on the probability of success for Grover’s algorithm with a sin-
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gle Y error. Allowing k iterations before an error occurs, the system will

be in the state (6.20). As in the case of Z errors, we will determine the

final result of a single Y error by projecting the resulting state Y |φ〉 into the

Grover subspace. To this end, we first consider the term 〈α|XiZi|ψ〉 which

is equivalent to 〈α|Yi|ψ〉 up to a global phase. We assume with no loss of

generality that the ith bit of the solution is a 1 and so Zi applies a phase shift

to the solution. As with our analysis of a single Z error, the case in which Zi

does not apply a phase shift to the solution will be different only by a global

phase of −1. Here, |α〉 will be made up of one more state with a 1i than with

0i. The Z error will apply a phase to half of the computational basis states

in |ψ〉 (those with 1i), and so after the application of Xi, all computational

basis states with 0i will have a phase of −1. Thus 〈α|XiZi|ψ〉 = − 1√
N−1

1√
N

.

Additionally, as the solution has 1i, 〈α|XiZi|s〉 = − 1√
N−1 . We also note that

〈s|XiZi|ψ〉 = 1√
N−1 and 〈s|XiZi|ψ〉 = 0. As such, we can write the state

XiZi|φ〉 with components parallel and perpendicular to the Grover subspace

XiZi|φ〉 =
b(k)√
N − 1

|α〉+
a(k)√
N − 1

|s〉+ (|φ〉)⊥ (6.35)

We can write the part of this vector parallel to the Grover subspace in

parametric form:

(XiZi|φ〉)‖ = s cos(γ)|α〉+ s sin(γ)|β〉, s =
1√
N − 1

,

γ = tan−1
(

cot

((
k +

1

2

)
θ

))
= −π

2
+

(
k − 1

2

)
θ. (6.36)

We apply evolution under m − k additional Grover iterations to (6.36) to

obtain the final component of the state parallel to the Grover subspace:

(XiZi|φ〉)‖ =
1√
N − 1

(
cos

(
−π

2
+

(
m− 1

2

)
θ

)
|α〉

+ sin

(
−π

2
+

(
m− 1

2

)
θ

)
|β〉
)
. (6.37)

From (6.37) we can find the coefficient of the solution after m iterations with

an error after k iterations:

cs = − 1√
N − 1

cos

((
m− 1

2

)
θ

)
. (6.38)
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We note that (6.38) does not depend upon k and so the coefficient in the

search state with one error is independent of when the error occurs, as long as

it occurs between Grover iterations. Averaging c2s over all possible k values

will thus give the value ps = c2s = 1
N−1 cos

((
m− 1

2

)
θ
)2

. This value has two

immediate implications. Firstly, if we set m to the optimal noiseless value of

m = bπ4
√
Nc, then cos

((
m− 1

2

)
θ
)
≈ 0, and so ps ≈ 0 (this approximation

becomes better as N becomes larger). Secondly, if we take the large N

limit, ps will approach zero no matter the value of m. This behaviour is

very different to that calculated and observed in the previous sections for X

and Z errors. Finally, we note that for small values of θ, cos (π/2 + θ) = −θ,
and so for large N and m = bπ4

√
Nc, ps ≈ 1

N2 = 2−2n, and so we would

expect to see an exponential decay of ps for one Y error with increasing

numbers of qubits.

Simulation results

In figure 6.10 we show the values of ps obtained by simulating Grover’s

algorithm with one Y error. We also show the line of best fit through this
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Figure 6.10: The probability of success of Grover’s algorithm with one Y
error, as well as a linear fit through log ps.

data, which gives an exponential decay ps = a2−bn where b = 1.93 ± 0.09.

This is the same (within the standard error) as the expected decay rate of

2−2n. The deviations of the values obtained from a monotonic exponential

decrease are most likely due to the large N approximations made in our

analysis not applying in cases with smaller numbers of qubits.

We also obtain an exponential decrease in ps for other odd numbers

of errors. The exponential decay of ps with n for 15 errors in shown in
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figure 6.11a, as well as the line of best fit for the decay. For 15 errors, we
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Figure 6.11: (a) The probability of success of Grover’s algorithm with 15 Y
errors as well as the line of best fit. (b) The gradients of fits to ps versus n
for different odd numbers of errors.

disregard the first three data points (which clearly do not fall on the line of

best fit) and obtain a gradient of b = −0.9959 ± 0.0009, which is also the

decay rate in ps = a2bn. Given the closeness of this value to 1 and the fact

that we are using numbers of qubits (5 and above) for which the large N

approximation may not hold to a high degree of accuracy, it seems that for

large N , ps = a2−n.

For even numbers of errors, we find two different regimes of behaviour.

At low numbers of errors, the value of ps decays inverse polynomially, while

for large numbers of errors, ps decays exponentially. We show examples of

these two regimes in figure 6.12, where we display ps for 2 errors and 14

errors. The first plot is a clear power law decay, but the second plot has a

few points which are clearly different to the otherwise exponential decay. It

is difficult to say whether these points are artifacts of using an insufficient

number of stochastic simulation runs or whether they are an underlying

feature of the physics. Nonetheless, these points illustrate the difficulty in

assessing when one regime stops and the other starts. That is, numbers of

errors between 2 and 14 generally seem to contain some points which lie on a

straight line in a log plot, and others which lie on a straight line in a log-log

plot. It is difficult to say which to what degree these points are statistical,

or to draw further conclusions about the decay of ps.
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Figure 6.12: The probability of success of Grover’s algorithm with two even
numbers of errors, (a) 2 and (b) 14.

6.4.4 Depolarising noise

The final noise model we consider is that of depolarising noise. We simulate

depolarising noise by applying a fixed number of errors as for our analyses

of the affects of X, Y , and Z errors, but when an error occurs we randomly

select which of X, Y or Z we apply. We expect the results to follow in

part from the processes we found in the previous error analyses; however,

including multiple kinds of error allows the different errors to interact and

so additional effects will be present.

We observe a convergence of ps towards a fixed value for each number of

errors as the number of qubits is increased. This convergence is illustrated

in figure 6.13. However, the rate of convergence is much slower than that

observed in either X or Z errors. For example, ps for 5 qubits seems to have

converged from approximately 11 qubits onward. In line with this slower
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Figure 6.13: The probability of success of Grover’s algorithm for numbers
of errors between 0 and 5.
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rate of convergence, we find that for the largest numbers of numbers of errors

simulated, ps does not appear to converge within the range of the numbers

of qubits simulated. We illustrate this in figure 6.14 where we show ps for 10

and 15 errors. The data for 10 errors appear to converge by approximately
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Figure 6.14: The probability of success of Grover’s algorithm for 10 and 15
errors.

17 qubits. There are, however,several large temporary drops in ps after this

point. The large error in ps at these points makes it difficult to determine

if these drops are physical, or a result of insufficient numbers of stochastic

simulation runs. The error would be reduced by simulating many more (for

example 10000) stochastic pure state evolutions.

In contrast to the data for 10 errors, ps does not seem to converge before

30 qubits, the maximum simulated. The value of ps continues to decrease

exponentially up to 30 qubits. Despite this, there are several points at which

ps temporarily increases by around an order of magnitude. As with 10

qubits, the large error in ps at these points makes drawing any conclusions

about their physicality or otherwise impossible. The large errors suggest

that these points are statistical aberrations, and so more simulations should

be performed to clarify them. Regardless of the presence of these points,

the lack of convergence of the 15 qubit data means that we cannot include

it when performing fits to the decay rate of ps with increasing numbers of

errors.

We qualitatively assessed that all numbers of errors between 0 and 11

converged within the range of numbers of qubits tested, and so considered

only these data points wen performing fits. As with fits carried out in

sections 6.4.1 and 6.4.2, the first three data points on each (ne, ps) curve
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did not appear to agree with the otherwise linear relationship on a log-log

plot, and so we disregarded them. Using the remaining numbers of errors

(between 3 and 11), we constructed linear fits on log-log plots for each

number of qubits. The gradients of these fits, which is also the power of the

decay of the probability of success, ps = anbe, are shown in figure 6.15. The

gradient of the fits increase until approximately 13 qubits. The red dashed

line shows the line of best fit through this data, giving a rate of increase of

nc where c = 1.93 ± 0.07 and n is the number of qubits. After 13 qubits

the gradients appear to stabilise to their converged value of 4.51±0.09 (this

value is found by taking the mean of each gradient from 13 qubits onward).

There is a single point which is much greater than this value at 27 qubits,

where b takes the value b = −12.435 ± 3.14. This unusually large value

results from the presence of several anomalies which are likely statistical in

nature, and are similar to those shown in figure 6.14. As with those points,

further simulations could resolve whether this data point is an artifact of

insufficient statistical sampling.
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Figure 6.15: The gradients of linear fits on a log-log plot between the number
of errors (for between 3 and 11 errors) and ps for varying numbers of qubits.

6.4.5 Physical error models

While analysing the result of a fixed number of errors provides insight into

the resilience of an algorithm, it is not a physical error model. A physical

quantum computer would perform an algorithm as a series of gates. Each
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gate has a percentage change of failure in a given error model and noise

on each qubit is discretised into a fixed probability of an error occurring at

each time-step. We will extend our results to describe a small fixed chance

of error on each qubit for each time-step.

To connect our results with a physical error model, we must describe

how many errors occur under the physical error model. Assuming a fixed

percentage of error each time step of ε, and a circuit involving nt time-

steps, the number of errors ne will follow a binomial distribution. As we are

interested in circuits with large numbers of qubits but only small numbers

of errors, we take the limit that e� 1 or equivalently that ne � nt. In this

case, the binomial distribution is very well approximated by a Poissonian

distribution with mean εnt:

p(ne) =
(εnt)

ne

ne!
e−εnt , (6.39)

where p(ne) is the probability of a number of errors ne occurring. Given

this probability function for the number of errors, and a formula for the

probability of success ps = ane
b, we may find the expected value of the

probability of success for a given nt, ε:

〈ps〉 =
∑
ne

p(ne) ps(ne) = ae−εnt
∑
ne

(εnt)
ne

ne!
ne
b (6.40)

The decay rates for ps which we found in the previous sections only provided

a good fit for the data if we excluded points with three or less errors. As

such, (6.40) will only provide a good approximation to ps if the probability

of obtaining 0, 1 or 2 is very low. In addition, (6.40) is only valid if the

number of qubits is much greater than the number of errors. While we have

not derived quantitative bounds on how large the number of qubits must

be, our results in the previous sections should provide some guidelines.

To obtain a relationship between ps and the probability of error using our

earlier results, we truncate the sum in (6.40) to terms with ne > 3. For the

other terms, we average ps over all converged results for the specified number

of errors and multiply by the corresponding Poisson distribution term p(ne).

We show the expected value ps for only X or Z errors (they are similar due

to us using the approximation ps = aeb over a large range of error numbers)

in figure 6.16. As λ = εnt increases, the Poisson distribution narrows (it
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Figure 6.16: The expected probability of success of Grover’s algorithm with
an error model which has a fixed probability ε of a X error occurring per time
step with nt time steps. The blue line is a fit to the data between εnt = 10
and εnt = 20 while the red line is the expected long-term behaviour.

has a standard deviation of
√
λ) and so 〈ps〉 approaches the expected value

found if a δ distribution is used: 〈ps〉 = aλb. This relationship is shown in

figure 6.16 with a red line, and it is evident that the data is approaching

this line. We confirmed this approach by calculating 〈ps〉 for much larger

values of εnt, but such a regime is not as relevant for our study on the effect

of a limited number of errors. Also shown in figure 6.16 is the line of best

fit from εnt = 10 until εnt = 20. The gradient of this line is −1.578± 0.002

and the line provides a very good fit to the data in the region considered.

However, the data and this line of best fit diverge at higher values of εnt. It

is clear that if only a small region of εnt is considered, spurious conclusions

can be drawn about the large scale behaviour of 〈ps〉.
A more dramatic illustration of the difference between short and long

term behaviour of 〈ps〉 can be found by consider depolarising noise. Includ-

ing X, Y and Z errors, we show 〈ps〉 in figure 6.17. We first show 〈ps〉 for

εnt between 0 and 20 in figure 6.17a. The red line is is the curve a(εnt)
b

and the blue line is the line of best fit between εnt = 10 and εnt = 20,

which has a gradient of −6.293 ± 0.008. In this case, the blue line appears

to provide a much better fit to the data. However, we also show 〈ps〉 for

εnt up to 200, and it is clear that with large values of εnt, 〈ps〉 approaches

a(εnt)
b to a very good approximation. We note that we have only performed

direct simulations of Grover’s algorithm with numbers of errors up to 15 and

so extending our results to describe the performance of the algorithm with

200 errors involves a large amount of extrapolation. It is possible that the

large N behaviour we analysed in sections 6.4.1, 6.4.2 and 6.4.4 persists,
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Figure 6.17: The expected probability of success of Grover’s algorithm with
an error model which has a fixed probability ε of a X, Y or Z error occurring
per time step with nt time steps. Two different ranges of εnt are shown.
The blue lines are a fit to the data between εnt = 10 and εnt = 20 while the
red lines are the expected long-term behaviour.

but without further simulations of very large systems we would be unable

to draw this conclusion definitively.

6.5 Discussion

In this chapter we have shown how to simulate Grover’s algorithm with

MPOs. The work of Saitoh [160] does include an example simulation of

Grover’s algorithm with a MPS. However, this example is for a specific case

of the algorithm, and does not provide information about how to generalise

the simulation. In this respect, our work generalises and extends this ex-

ample. It is well known how to convert Grover’s algorithm into a quantum

circuit, and so a MPS simulation for any specific case of Grover’s algorithm

could be performed with the software package created by Saitoh [160]. How-

ever, we optimise the simulation of Grover’s algorithm by using MPOs, and

so a MPS simulation would not be as fast to perform. In particular, our

work allows operators of the form Ga to be performed in log(a) time, while

previous simulations would require a individual applications of the Grover

iteration. Our simulations methods are also substantially faster than large-

scale parallel state vector simulations.

The fact that the noiseless version of Grover’s algorithm is restricted to a

subspace of dimension 2 means that an instance of any size can be simulated

with a two-dimensional vector and high precision complex numbers. How-

ever, our simulation techniques allow errors on any qubit to the be added to
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a large simulation of Grover’s algorithm. We have considered X, Y and Z

errors independently, as well as depolarising noise, but it would be possible

to perform similar simulations with a variety of noise models.

Owing to the large number of error models used in the previous noisy

simulations of Grover’s algorithm, only the results of Salas [171] and Azuma

[162, 163] concern error models which are similar to ours. Salas simulated

Grover’s algorithm with depolarising noise and finds an exponential damp-

ing law for the probability of success as the amount of noise increases. The

derived scaling is of the probability of success at the first maximum of the

algorithm, while we measure probability of success at the optimal number of

noiseless iterations. With a physical error model, each iteration suffers de-

coherence and so the position of the maximum probability is shifted forward

in iteration number. Our scalings and those of Salas are thus not directly

comparable. Both results find an exponential dropoff of success probability

with increasing error probability. Our results are more applicable to the

operation of a quantum computer in which the level of noise is not well

characterised.

Azuma perturbatively treats Grover’s algorithm at low probabilities of

Z errors occurring. In [162] this perturbation is calculated analytically up

to third order, corresponding to three errors occurring. The work of Azuma

thus extends the calculations we have performed in section 6.4.2, although

our calculations are less involved. In [163], the perturbation theory is ex-

tended by a recurrence relation with CAS software up to the 39th order.

The fact that these calculations have been performed suggests that similar

calculations may be possible for other kinds of errors, such as X errors which

we consider in section 6.4.1.

Many papers, including [171] find a scaling for the size of allowable noise

in Grover’s algorithm of N−a. Our results suggest that for X, Y and Z

errors as well as depolarising noise, the probability of success depends only

on the number of errors occurring and not on the number of qubits, pro-

vided that the number of qubits is high enough. In this case the number

of allowable errors remains the same regardless of N . With a physical error

model including an error rate per time step per gate of ε and with ng gates,

the expected number of errors will be ngε. The number of Grover iterations

required is on the order of N1/2, so if each Grover iteration requires nb gates

then ng = N1/2nb, and for ngε to remain constant as N increases, we require
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that ε ∼ N−1/2n−b = N−1/2(log2(N))−b, which for limited ranges of N will

appear to be a relation of the form ε ∼ N−1/2. Salas finds that the per-

missible level of depolarising noise is N−1.1 which does not agree with our

conclusion. However, we note that range of the number of qubits in which

the simulations of Salas operate are well below the level we find that give a

constant probability of success for a reasonable number of errors regardless

of the number of qubits. As such, we would expect the conclusions drawn

in Salas to differ from those we draw, as we simulate Grover’s algorithm for

larger range of n. Performing more simulations at still greater values of n

and with more stochastic runs per simulation would serve to increase our

confidence in our conclusions and to tighten the bounds around some of the

decay rates observed in sections 6.4.4.



Chapter 7

Conclusion

In this thesis, we have used MPOs and MPSs to simulate the QFT, Shor’s

algorithm and Grover’s algorithm. To perform these simulations, original

simulation techniques using MPOs were developed. As MPOs and MPSs

allow efficient simulation of large systems with limited amounts of entangle-

ment power and entanglement respectively, these data structures allow us to

simulate large systems. Simulations of systems with more qubits than ours

have been performed in the past for both Shor’s algorithm and Grover’s

algorithm. However, it is worth noting that our simulations have taken

place on a single core of a laptop computer, while the larger simulations

summarised in chapters 5 and 6 took place on super computers with many

cores. By moving to a more powerful computer, it would be possible to use

our methods to simulate a considerably larger system.

Our simulations have been conducted with a limited numbers of quan-

tum errors occurring. Such simulations are more computationally demand-

ing than those occurring without errors, particularly in the case of Grover’s

algorithm in which all evolution in the error free case takes place in a Hilbert

space of dimension 2, regardless of the number of qubits in the system. Our

simulations of both Shor’s algorithm and Grover’s algorithm contain more

qubits than earlier simulations incorporating noise. The ability to simulate

large noisy quantum algorithms comes at the cost of inflexibility in the error

model used. That is, we only simulate fixed numbers of single qubit X, Y

and Z errors for Grover’s algorithm, and only Z errors in Shor’s algorithm.

This limitation is inherent in the use of MPSs and MPOs, as these data

structures can only efficiently simulate states with small amounts of entan-
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glement. While the three Pauli errors are universal for single qubit noise,

our simulations operate at a high level of abstraction and we apply errors

only at limited locations to increase simulation speed. Simulations with

more general noise models would have to use other techniques, in particular

full density matrix calculations for fully general noise models.

By considering the operation of quantum algorithms through the lens of

matrix product simulation, and by constructing MPOs, we have been able to

make computational and theoretical points about the operation of the QFT,

Shor’s algorithm and Grover’s algorithm. In chapter 3 we presented strong

numerical evidence that the Schmidt coefficients across any bipartition of

the MPO of the QFT do not increase as more qubits are added to the

transform. This has the implication that a constant number of QFTs can

be efficiently applied to a quantum state whose Schmidt rank grows only

polynomially with the number of qubits. By reference to our results about

the large Schmidt rank of MPSs in Shor’s algorithm simulations with high

r values in chapter 4, this suggests that the quantum speedup in Shor’s

algorithm depends upon the highly entangled (and thus high Schmidt rank)

states generated by modular exponentiation. By considering the operation of

Shor’s algorithm with a MPS simulation, we have explained and generalised

earlier results about the amount of entanglement present during error-free

runs of Shor’s algorithms. In Grover’s algorithm, we found that the minimal

bond rank of a MPO encoding an oracle with one solution is 2 (for any

number of qubits) and the minimal rank for an oracle with an arbitrary

number of solutions is at most
√
N where N is the size of the search space.

This result allow us to conclude that a circuit generating a Grover oracle may

create entanglement during the operation of the circuit, but must destroy

most of it before completion.

Our noisy simulations of Grover’s algorithm and Shor’s algorithm al-

lowed us to derive scalings for the probability of success with the number of

errors or the probability of an error in the regime where a small number of

errors occurs. We found that the probability of success of Shor’s algorithm

scales with e−a(N)ne , where ne is the number of Z errors occurring and a(N)

is a linear function of N , the number being factorised. This is an exponen-

tial decline in the success probability with increasing numbers of errors, and

a super-exponential decrease in the success probability as the problem size

increases. Such a scaling suggests that the algorithm is not viable for the
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factorisation of large numbers with even small numbers of errors. However,

it must be noted that with quantum error-correction, a quantum computer

could be made fault tolerant, and so no errors would occur. In this case,

Shor’s algorithm would present a viable method for factorising numbers, al-

beit with a large overhead in the numbers of qubits required to construct a

fully fault-tolerant quantum computer.

We found that the probability of success of Grover’s algorithm scales with

anbe, where ne is the number of errors occurring. This is a more favourable

scaling than we observed in Shor’s algorithm, although the probability of

success of a single error-bound run varies greatly based upon which errors

occur, where and when they occur. It is difficult to compare our results for

either Grover’s algorithm or Shor’s algorithm to earlier results determining

the effect of errors on algorithm success because of the disparate error models

used in each earlier work and in this thesis. Where conflict does arise, our

results are likely to apply to a broader regime of numbers of errors and

qubits because of the increased size of our simulations relative to earlier

noisy simulations of quantum algorithms.

The work presented in this thesis could be directly extended by proving

that the Schmidt rank required of the MPO of the QFT for a particular

precision does not increase with the number of qubits, by running similar

simulations of larger systems on more powerful computers, or by incorpo-

rating different error models in simulations of Grover’s algorithm. Running

larger simulations would extend the results obtained for the scaling of the

probability of success of the algorithms to larger numbers of qubits and re-

duce the error bounds in the scalings derived. Incorporating different error

models would be informative if an error model could be derived that more

accurately matched the noise likely to be encountered in a physical quantum

computer. However, to maintain efficient simulability, any new noise model

would still need to use a limited and discrete number of errors. Such an ap-

proach has limited utility at the lower levels of abstraction at which quantum

computing architectures are considered. Owing to the large Schmidt rank

encountered for simulations of Shor’s algorithm with X errors, it is unlikely

that other error models could be constructed which would permit efficient

simulation with MPSs.

More broadly, there are many potential extensions of this work. The

constant size of the MPO representation of the QFT per qubit as the num-
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ber of qubits increases prompts us to ask if other favourable scalings follow.

For example, can a relationship be found between the size of the MPO rep-

resentation of an operator and the complexity of any potential circuit repre-

sentation of the operator, and what implications would this have for circuit

implementations of the QFT? Such a relationship exists for generation of

MPS states [178], but one has not been found for MPOs. The ability of

MPO simulations to simulate quantum algorithms with many qubits means

that the determination of the entanglement of MPS and matrix product

density operator states throughout the simulation would be worthwhile. We

have used the log-negativity to do this in this thesis, but (relatively) quick

calculation of other entanglement measures may be possible. It may also be

possible to extend our techniques to perform circuit simulations with ma-

trix product density operators, which would allow a more direct application

of physically reasonable noise models. However, it is not clear that such

simulations would be computationally efficient.

We have introduced quantum algorithm simulations incorporating MPOs

by simulating the QFT, Shor’s algorithm and Grover’s algorithm, allowing

us to perform large simulations and draw conclusions about the operation

of, and effect of error on, these algorithms. It is likely that interesting

results could be obtained by simulating other algorithms, particularly quan-

tum simulation of small and simple systems. However, many algorithms

could not be simulated using the methods developed in this thesis as they

are too entangling or not easily represented with a small number of quantum

gates and MPOs. We note that there are other quantum simulation tech-

niques, such as stabilizer simulations, which permit the efficient simulation

of other classes of quantum algorithm (notably quantum error correction).

In this context, MPOs allow significant improvements in the speeds of some

simulations and should be seen as another tool in the simulation arsenal of

quantum algorithms research.
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[66] Michael Zwolak and Guifré Vidal. Mixed-State Dynamics in One-

Dimensional Quantum Lattice Systems: A Time-Dependent Su-

peroperator Renormalization Algorithm. Physical Review Letters,

93:207205, 2004.

[67] B Pirvu, V Murg, J I Cirac, and F Verstraete. Matrix product operator

representations. New Journal of Physics, 12(2):025012, 2010.
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[122] F. Fröwis, V. Nebendahl, and W. Dür. Tensor operators : Construc-

tions and applications for long-range interaction systems. Physical

Review A, 81(6):062337, 2010.



Bibliography 154

[123] Michael Nielsen, Christopher Dawson, Jennifer Dodd, Alexei Gilchrist,

Duncan Mortimer, Tobias Osborne, Michael Bremner, Aram Harrow,

and Andrew Hines. Quantum dynamics as a physical resource. Phys-

ical Review A, 67(5):052301, May 2003.

[124] F. Verstraete, D. Porras, and J. Cirac. Density Matrix Renormaliza-

tion Group and Periodic Boundary Conditions: A Quantum Informa-

tion Perspective. Physical Review Letters, 93(22):227205, 2004.

[125] J. Eisert, M. Cramer, and M. B. Plenio. Colloquium: Area laws for

the entanglement entropy. Reviews of Modern Physics, 82(1):277–306,

2010.

[126] Dorit Aharonov, Zeph Landau, and Johann Makowsky. The quantum

FFT can be classssically simulated. arXiv preprint quant-ph/0611156,

2006.

[127] Nadav Yoran and Anthony Short. Efficient classical simulation of

the approximate quantum Fourier transform. Physical Review A,

76(4):042321, 2007.

[128] Adriano Barenco, Artur Ekert, Kalle-Antti Suominen, and Pivi
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